

# **USER MANUAL**



# Solar Storage Inverter

ASP4880S180-H ASP48100S200-H



# **Table of Contents**

# 1. Safety

| 1.1 How to use this manual | 4 |
|----------------------------|---|
| 1.2 Symbols in this manual | 4 |
| 1.3 Safety instruction     | 4 |

# 2. Production Instructions

| 2.1 Instructions              | 5 |
|-------------------------------|---|
| 2.2 Features                  | 5 |
| 2.3 System connection diagram | 6 |
| 2.4 Production overview       | 7 |

# 3. Installation

| 3.1 Select the mount location                                    |
|------------------------------------------------------------------|
| 3.2 Mount the inverter9                                          |
| 3.3 Remove the terminal cover9                                   |
| 3.4 Parallel wiring connection10                                 |
| 3.4.1 Instruction                                                |
| 3.4.2 Precautions for connecting the parallel connection cable10 |
| 3.4.3 Single-phase parallel connection guide diagram11           |
| 3.4.4 Three-phase parallel connection guide diagram14            |

# 4. Connection

# 5. Operation

| 5.1 Operation and display panel | 27 |
|---------------------------------|----|
| 5.2 Setting                     | 31 |



# **Table of Contents**

| 5.3 AC output mode                          | 37 |
|---------------------------------------------|----|
| 5.4 Battery charging mode                   | 38 |
| 5.5 Time-slot charging/discharging function | 40 |
| 5.6 Battery parameter                       | 41 |

# 6.Communication

| 6.1 Overview       | 43 |
|--------------------|----|
| 6.2 USB-B port     | 43 |
| 6.3 WIFI port      | 44 |
| 6.4 RS485/CAN port | 44 |
| 6.5 Dry contact    | 45 |

# 7. Fault and Remedy

| 7.1 Fault code      | 46 |
|---------------------|----|
| 7.2 Troubleshooting | 48 |

# 8. Protection and Maintenance

|   | 8.1 Protection features | ·49  |
|---|-------------------------|------|
|   | 8.2 Maintenance         | · 50 |
| 9 | . Datasheet             | 51   |



# 1. Safety

### 1.1 How to use this manual

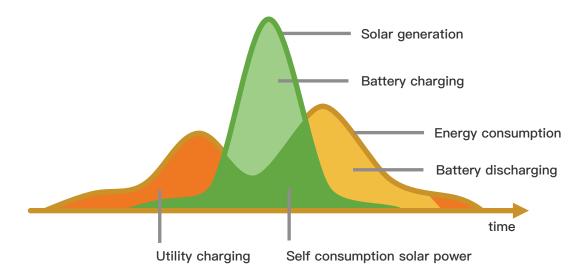
- This manual contains important information, guidelines, operation and maintenance for the following products: ASP series 4880S180-H, 48100S200-H
- The manual must be followed during installation, using and maintenance.

# 1.2 Symbols in this manual

| Symbol    | Description                                                                                             |  |  |  |  |
|-----------|---------------------------------------------------------------------------------------------------------|--|--|--|--|
| A DANGER  | DANGER indicates a hazardous situations which if not avoided will result in death or serious injury.    |  |  |  |  |
| A WARNING | WARING indicates a hazardous situations which if not avoided could result in death or serious injury.   |  |  |  |  |
| A CAUTION | CAUTION indicates a hazardous situations which if not avoided could result in minor or moderate injury. |  |  |  |  |
|           | NOTICE provides some tips on operation of products.                                                     |  |  |  |  |

# 1.3 Safety instruction

### A DANGER


- This chapter contains important safety instructions. Read and keep this manual for future reference.
- Be sure to comply the local requirements and regulation to install this inverter.
- Beware of high voltage. Please turn off the switch of each power sources before and during the installation to avoid electric shock.
- For optimum operation of this inverter, please follow required specification to select appropriate cable size and necessary protective device.
- Do not connect or disconnect any connections when the inverter is working.
- Do not open the terminal cover when the inverter working.
- Make sure the inverter is well grounding.
- Never cause AC output and DC input short circuited.
- Do not disassembly this unit, for all repair and maintenance, please take it to the professional service center.
- Never charge a frozen battery.



# **2. Production Instructions**

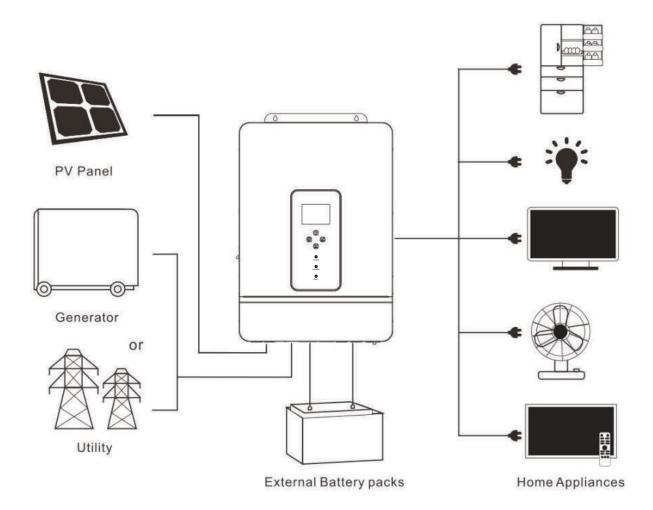
# 2.1 Instructions

ASP series is a new type of solar energy storage inverter control inverter integrating solar energy storage & utility charging and energy storage, AC sine wave output. It adopts DSP control and features high response speed, reliability, and industrial standard through an advanced control algorithm.



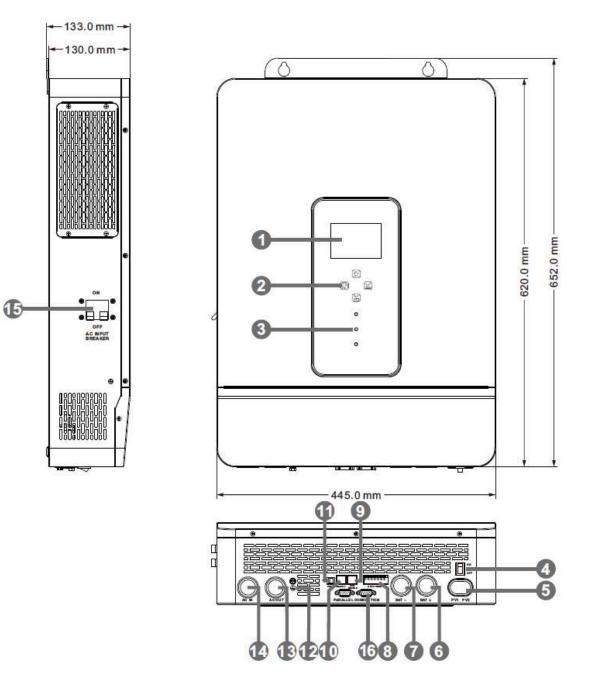
# 2.2 Features

- Supports lead acid battery and li-ion battery connections.
- With a dual activation function when the li-ion battery is dormant; either mains or photovoltaic power supply access can trigger the activation of the li-ion battery.
- Supports single-phase parallel and parallel three-phase pure sine wave output.
- Stand-alone or parallel systems support 200, 208, 220, 230 and 240Vac voltage levels
- Supports two solar inputs and simultaneous tracking of two solar maximum power charging/carrying capacity functions.
- Dual MPPT with 99.9% efficiency and maximum 22A current in a single circuit, perfectly adapted to high power modules.
- 4 charging modes are available: solar only, mains priority, solar priority, and mixed mains and PV charging.
- Time-slot charging and discharging setting function is available in both off-grid and hybrid grid-connected modes.
- Stand-alone energy saving mode function to reduce no-load energy losses.
- With two output modes of utility bypass and inverter output, with uninterrupted power supply function.
- LCD large screen dynamic flow diagram design, easy to understand the system data and operation status.
- 360° protection with complete short circuit protection, over current protection, over under voltage protection, overload protection, etc.
- Support CAN, USB, and RS485 communication.
- With N grounding option.




### 2.3 System connection diagram

The diagram below shows the system application scenario of this product. A complete system consists of the following components:


- 1. PV modules: converts light energy into DC energy, which can be used to charge the battery via an inverter or directly inverted into AC power to supply the load.
- 2. Utility grid or generator: connected to the AC input, it can supply the load and charge the battery at the same time. The system can also operate generally without the mains or generator when the battery and the PV module power the load.
- **3.** Battery: The role of the battery is to ensure the regular power supply of the system load when the solar energy is insufficient and there is no mains power.
- 4. Home load: Various household and office loads can be connected, including refrigerators, lamps, televisions, fans, air conditioners, and other AC loads.
- 5. Inverter: The energy conversion device of the whole system.

The actual application scenario determines the specific system wiring method.

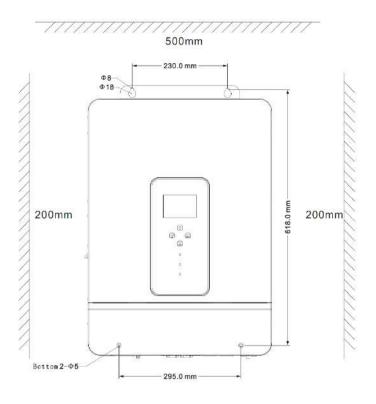




# 2.4 Production overview



| 1  | LCD screen                                                    | 2  | Touchable key  | 3  | LED Indicators   |
|----|---------------------------------------------------------------|----|----------------|----|------------------|
| 4  | ON/OFF Rocker Switch                                          | 5  | PV INPUT (1/1) | 6  | BAT INPUT (+)    |
| 7  | BAT INPUT (–)                                                 | 8  | Dry contact    | 9  | RS485/CAN port   |
| 10 | WIFI port                                                     | 11 | USB-B port     | 12 | Grounding Screw  |
| 13 | AC OUT (L+N)                                                  | 14 | AC IN (L+N)    | 15 | AC INPUT breaker |
| 16 | Parallel Communication port<br>(Only for parallel<br>modules) |    |                |    |                  |




# 3. Installation

### 3.1 Select the mount location

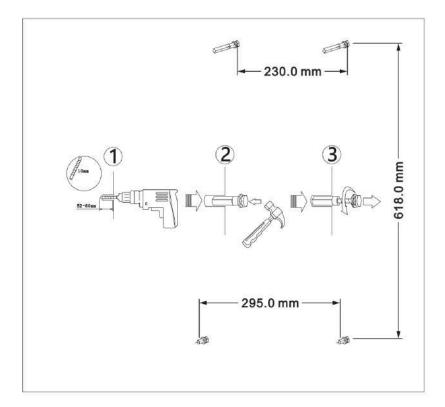
ASP series are designed for INDOOR USE ONLY (IP20) . Please consider the followings before selecting the location.

- Choose the solid wall to install the inverter.
- Mount the inverter at eye level.
- Adequate heat dissipation space must be provided for the inverter.
- The ambient temperature should be between -10~55°C (14~131°F) to ensure optimal operation.



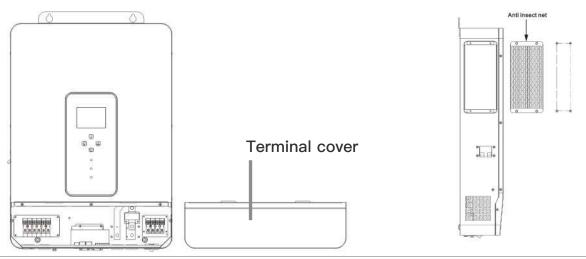
### A DANGER

- Do not install the inverter where highly flammable materials are near by.
- Do not install the inverter in potential explosive areas.
- Do not install the inverter with lead-acid batteries in a confined space.


#### **A** CAUTION

- Do not install the inverter in direct sunlight.
- Do not install or use the inverter in a humid environment.




# 3.2 Mount the inverter

Make 4 mounting holes in the wall with a drill according to the specified dimensions, insert two expansion screws above and two M5 size screws below for fixing the inverter.



### 3.3 Remove the terminal cover

Using a screwdriver, remove the terminal protection cover.



#### • NOTICE

• When using the device in areas with poor air quality, the dust screen is easily blocked by airborne particles. Please dismantle and clean the dust screen regularly to avoid affecting the internal air flow rate of the inverter, which may trigger an over-temperature protection fault (19/20 fault) affecting the use of the power supply and the service life of the inverter.




# 3.4 Parallel wiring connection

### 3.4.1 Introduction

- Up to six machines can be integrated into the reverse control module.
- When using the parallel function, it is necessary to correctly. Securely and reliably connect the parallel communication cable, as shown in the following connection diagram (packaging accessories) :

Parallel Communication Cable \* 1



### 3.4.2 Precautions for connecting the parallel connection cable

### Warning:

#### 1. PV Wiring:

When connected in parallel, different machines need to be connected to different PV arrays or PV sources. You cannot connect the same PV to different machines. The machine's PV1 and PV2 must not be be connected to the same PV source.

#### 2. Battery Wiring:

For single-phase or three-phase parallel connections, all inverse control units must be connected to the same battery, BAT+ to BAT+ and BAT- to BAT-. And make sure that the connections are correct and that the wires are of the same length and diameter before powering on the machine. Avoid wiring errors causing parallel system outputs improper operation.

#### 3. AC OUT Wiring:

#### a. Single-phase parallel lines

When connecting single–phase parallel machines, all inverse control units must be connected L to L, N to N wire and PE to PE. And make sure that the connections are correct and that the wires are of the same length and diameter before powering on the machine. Avoid wiring errors causing parallel system outputs improper operation. Wiring reference 2.4.3 Diagram.

#### b. Three-phase parallel lines

When connecting three–phase parallel machines, all inverse control units must be connected N to N wire and PE to PE. The L–wires of all machines in the same phase need to be connected together, but the L–wires of the AC outputs of different phases cannot be connected together. Other considerations as for parallel single–phase connection. Wiring reference 2.4.4 Diagram.

#### 4. AC IN Wiring:

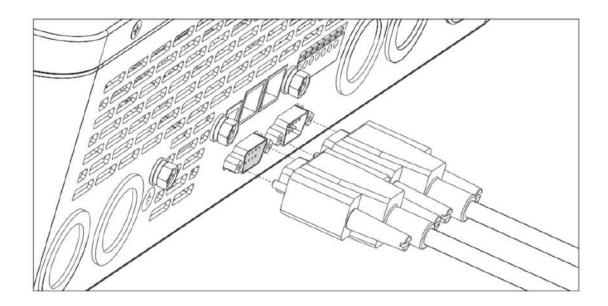
#### a. Single-phase parallel lines

When connecting single-phase parallel machines, all inverse control units must be connected L to L, N to N wire and PE to PE. And make sure that the connections are correct and that the wires are of the same length and diameter before powering on the machine. Avoid wiring errors causing parallel system outputs improper operation. At the same time, there must not be more than one different AC source input, avoiding damage to the inverter or external electrical equipment. Consistency and uniqueness of the AC source input is required. Wiring reference 2.4.3 Diagram.

#### b. Three-phase parallel lines

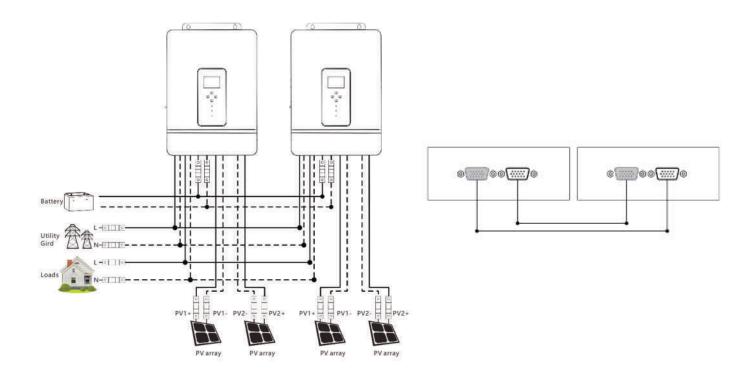
When connecting three-phase parallel machines, all inverse control units must be connected N to N wire



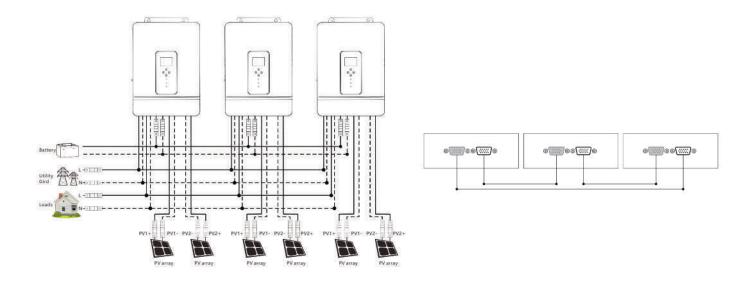

and PE to PE. The L-wires of all machines in the same phase need to be connected together, but the Lwires of the AC inputs of different phases cannot be connected together. Other considerations as for parallel single-phase connection. Wiring reference 2.4.4 Diagram.

#### 5. Parallel Communication Cable Wiring:

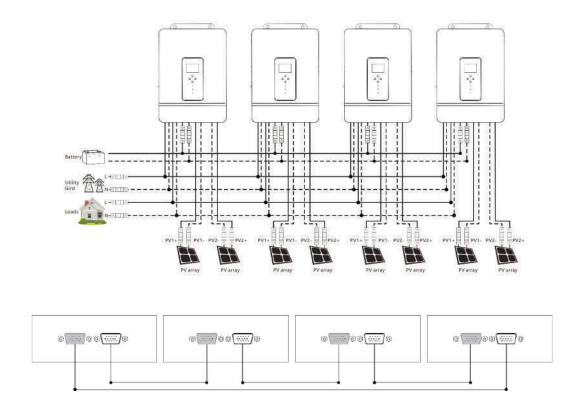
Our parallel communication cable is a standard DB15 computer cable with shielding. When using singlephase or three-phase machines in parallel, each machine must be connected one out and one in. This means that the male connector (out) of the machine is connected to the female connector (in) of the machine to be connected. Does not allow local male connectors to connect to local female connectors. At the same time make sure that the parallel communication cable is tightened through the DB15 terminal screw, which avoids disconnection or poor contact of the parallel communication cable leading to system output not working properly or damaged.


### 3.4.3 Single-phase parallel connection guide diagram

1. Parallel communication line and even flow detection line of inverse control unit need to be connected after screw locking. The schematic diagram is as follows:

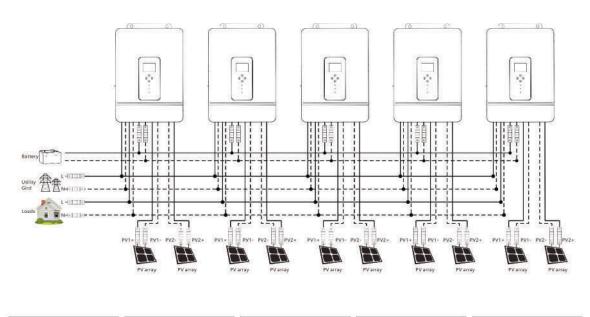


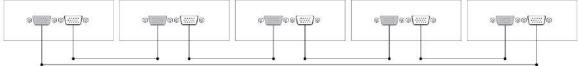




- 2. When multiple machines are connected in parallel, the parallel connection diagrams are as follows:
  - a. Two all-in-one solar charger inverters of the system connected in parallel



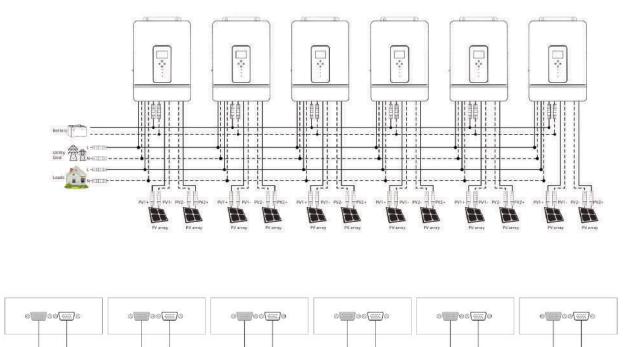
b. Three all-in-one solar charger inverters of the system connected in parallel



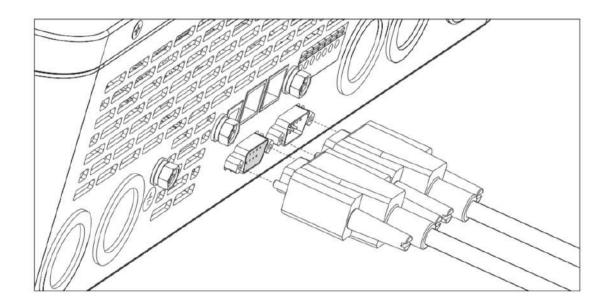



c. Four all-in-one solar charger inverters of the system connected in parallel


d. Five all-in-one solar charger inverters of the system connected in parallel



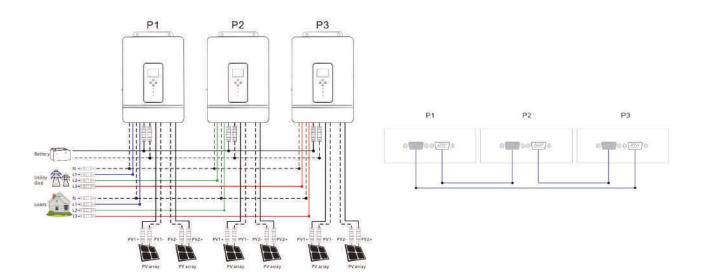




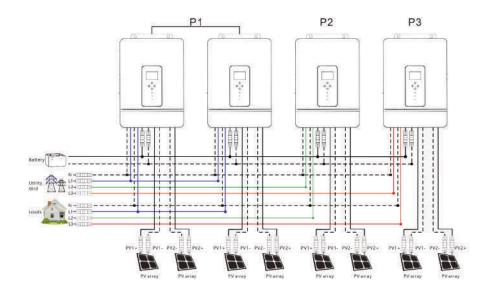

e. Six all-in-one solar charger inverters of the system connected in parallel

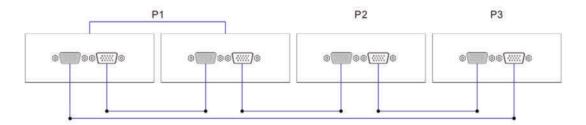


### 3.4.4 Three-phase parallel connection guide diagram


1. Parallel communication line of the inverters needs to be connected and then screwed and locked. The schematic diagram is as follows:



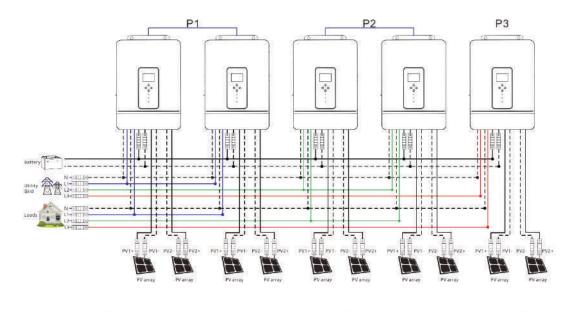


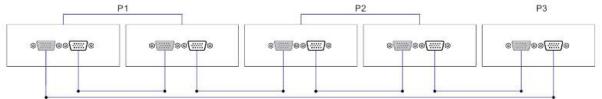


#### Three-phase parallel

a. Three all-in-one solar charger inverters of the system connected in three phase 1+1+1 system:

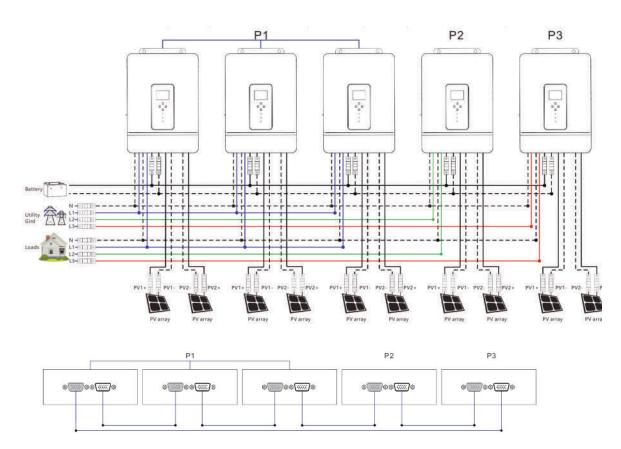


b. Four all-in-one solar charger inverters of the system connected in three phase
 2+1+1 system:



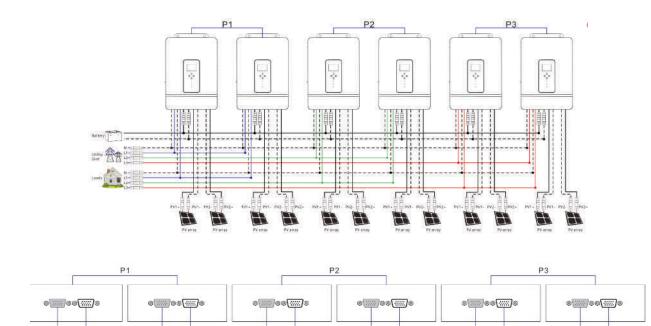




c. Five all-in-one solar charger inverters of the system connected in three phase

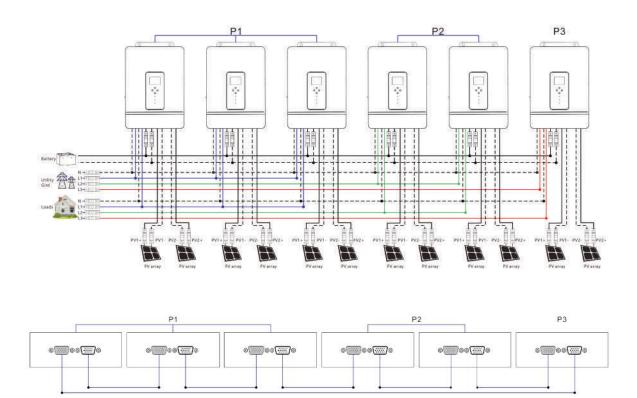
2+2+1 system:





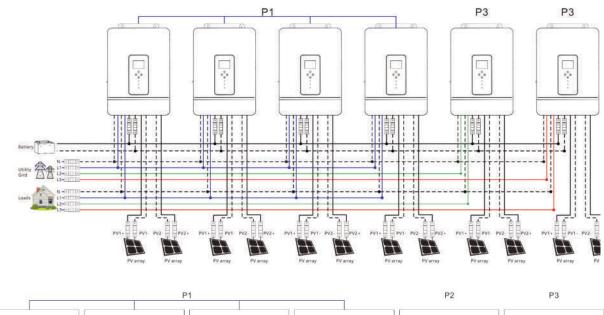

#### 3+1+1 system:






d. Six all-in-one solar charger inverters of the system connected in three phase

#### 2+2+2 system:




#### 3+2+1 system:





#### 4+1+1 system:



| e <b></b> 0e@0 | 0()60()8 | @ <b></b> @@{@ | 0()60()0 | 8()06()0 | @ <u></u> @@ <u></u> @ |
|----------------|----------|----------------|----------|----------|------------------------|
|                |          | L              |          |          |                        |



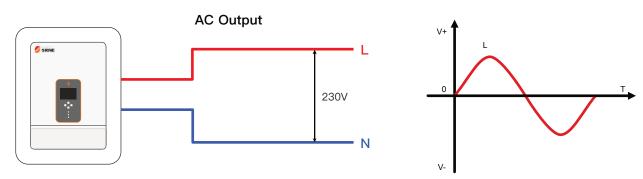
# NOTE:

- 1. Before starting up and running, please check whether the connection was correct to avoid any abnormalities in the system.
- 2. All wiring must be fixed and reliable to avoid wire drop during use.
- 3. When the AC output is wired to the load, it shall be properly wired according to the requirements of the electrical load equipment to avoid damage to the load equipment.
- 4. Settings [38] need to be set consistently or only for the host. When the machine is running, the voltage set by the host shall prevail, and the master will force the rewrite of the other slave machines to keep the same set. Only can be set in the standby mode.
- 5. Machine factory default for single machine mode, if you use parallel or three-phase function, you need to set the [31] item parameters through the screen. The setting method is: power on one machine at a time, the rest of the machine off, and then set the [31] item parameters according to the site system operation mode. After this machine is set successfully, turn off the machine switch and wait for the machine to be powered down, then set the rest of the machines in turn until all machines are set, and then all machines are powered up again at the same time and enter the working state.

The [31] setting item:

When in single phase parallel connection : setting [31] should be set as [PAL].

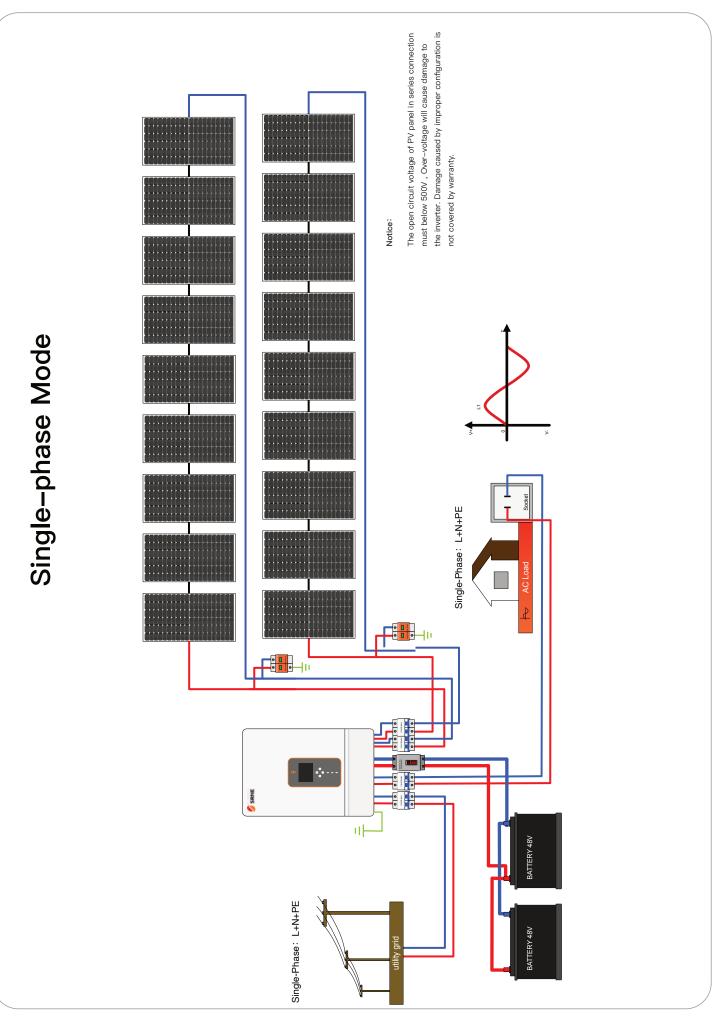
When in three phase parallel connection, all machines in phase 1 must be set as [3P1], all machines in phase 2 must be set as [3P2] all machines in phase 3 must be set as [3P3], at present, the voltage phase difference between P1–P2, P1–P3 and P2–P3 is 120 degrees.


a.When the output voltage set in the setting [38] is 230Vac, the line voltage between fire wire L1 in phase 1 and fire wire L2 in phase 2 is 230\*1.732 = 398Vac, and similarly the line voltage between L1–L3, L2–L3 is 398Vac.

6. After the system runs, the output voltage is measured correctly, and then the load setting is connected.



# 4. Connection


### 4.1 Single-phase output



| Items                         | Description                  |
|-------------------------------|------------------------------|
| Applicable Model              | ASP4880S180-H/ASP48100S200-H |
| AC Output Voltage Range (L-N) | 200~240Vac, 230Vac default   |

#### 

- Users can change the output voltage by setup menu. Please read the chapter 5.2 Setting.
- Output voltage corresponds parameter 38, the output voltage can be set from 200V to 240V.



SRNE



# 4.2 Cable & circuit breaker requirement

### • PV INPUT

| Model          | Cable Diameter | Max.PV Input Current | Circuit Breaker Spec |
|----------------|----------------|----------------------|----------------------|
| ASP4880S180-H  | 5mm²/ 10 AWG   | 22A                  | 2P-25A               |
| ASP48100S200-H | 5mm²/ 10 AWG   | 22A                  | 2P-25A               |

### • AC INPUT

| Model          | Output Mode  | Max.Input Current | Cable diameter | Circuit<br>Breaker<br>Spec |
|----------------|--------------|-------------------|----------------|----------------------------|
| ASP4880S180-H  | Single-phase | 63A (L/N)         | 13mm²/ 6AWG    | 2P-63A                     |
| ASP48100S200-H | Single-phase | 63A (L/N)         | 13mm²/ 6AWG    | 2P-63A                     |

### • BATTERY

| Model          | Cable Diameter            | Max.Battery Current | Circuit Breaker Spec |
|----------------|---------------------------|---------------------|----------------------|
| ASP4880S180-H  | 34mm²/ 2 AWG              | 180A                | 2P-200A              |
| ASP48100S200-H | 42mm <sup>2</sup> / 1 AWG | 220A                | 2P-250A              |

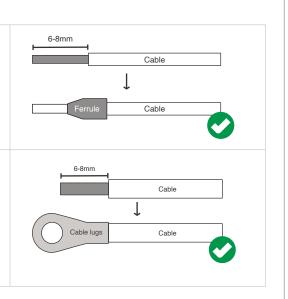
### • AC OUTPUT

| Model          | Output Mode  | Max.Output Current | Cable diameter | Circuit<br>Breaker<br>Spec |
|----------------|--------------|--------------------|----------------|----------------------------|
| ASP4880S180-H  | Single-phase | 63A (L/N)          | 13mm²/ 6AWG    | 2P-63A                     |
| ASP48100S200-H | Single-phase | 63A (L/N)          | 13mm²/ 6AWG    | 2P-63A                     |



### • NOTICE

#### • PV INPUT、AC INPUT、AC OUTPUT

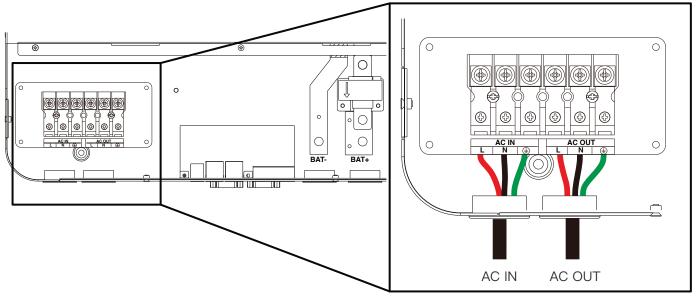

1. Use a stripper to remove the 6~8mm insulation of the cable.

2. Fixing a ferrule at the end of the cable. (ferrule needs to be prepared by the user)

#### • BATTERY

1. Use a stripper to remove the 6~8mm insulation of the cable

2. Fixing cable lugs that supply with the box at the end of the cable.

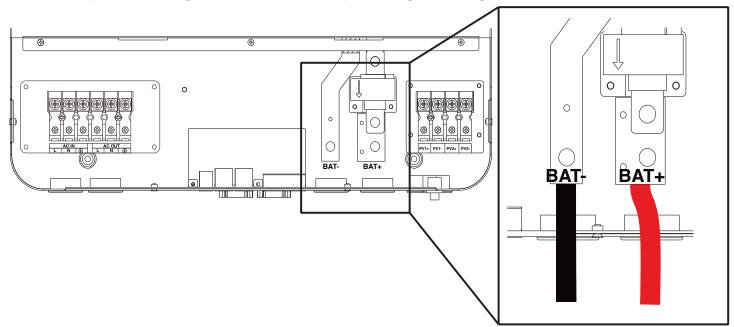



The wire diameter is for reference only. If the distance between the PV array and the inverter or between the inverter and the battery is long, using a thicker wire will reduce the voltage drop and improve the performance of the system.



### 4.3 AC input & output connection

Connect the fire wire, zero wire and ground wire according to the cables' position and order shown in the diagram below.



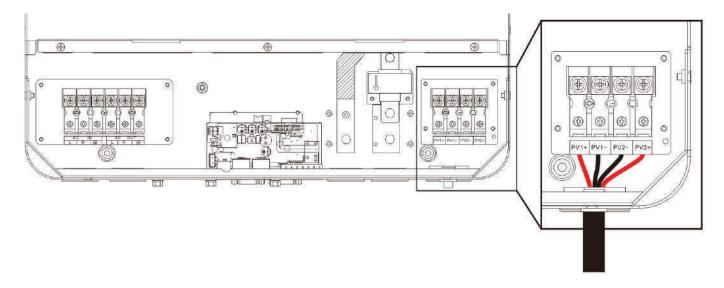

#### **A** DANGER

- Before connecting AC inputs and outputs, the circuit breaker must be opened to avoid the risk of electric shock and must not be operated with electricity.
- Please check that the cable used is sufficient for the requirements, too thin, poor quality cables are a serious safety hazard.

### 4.4 Battery Connection

Connect the positive and negative cable of the battery according to the diagram below.





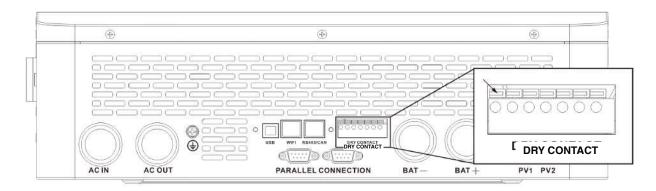

#### **DANGER**

- Before connecting battery, the circuit breaker must be opened to avoid the risk of electric shock and must not be operated with electricity.
- Make sure that the positive and negative terminals of the battery are connected correctly and not reversed, otherwise the inverter may be damaged.
- Please check that the cable used is sufficient for the requirements, too thin, poor quality cables are a serious safety hazard.

### 4.5 PV connection

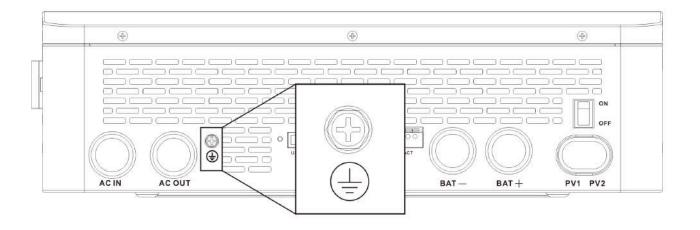
Connect the positive and negative wires of the two strings of PV according to the diagram below.




#### **DANGER**

- Before connecting PV, the circuit breaker must be opened to avoid the risk of electric shock and must not be operated with electricity.
- Please make sure that the open circuit voltage of the PV modules in series does not exceed the Max. Open Circuit Voltage of the inverter (In the ASP series, this value is 500V), otherwise the inverter may be damaged.




### 4.6 Dry contact connection

Use a small screwdriver to push back the direction indicated by the arrow, then insert the communication cable into the dry junction port. (Communication cable diameter 0.2~1.5mm<sup>2</sup>)



# 4.7 Grounding connection

Please make sure the grounding terminal connect to the Grounding Bar.



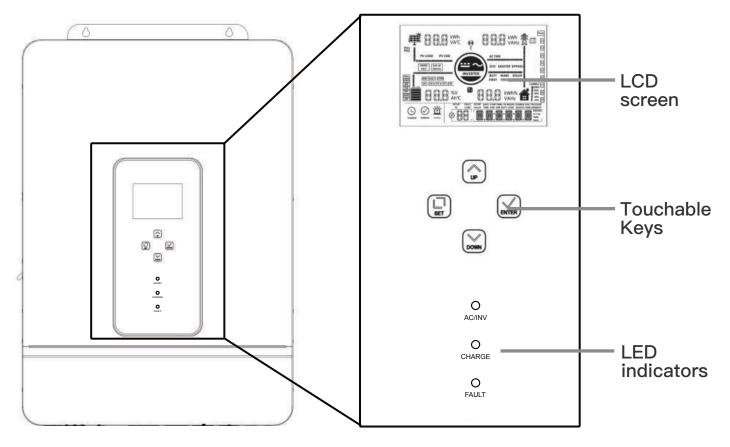
#### NOTICE

• The grounding cable should have a diameter of not less than 4 mm<sup>2</sup> and be as close as possible to the grounding point.

# 4.8 Final assembly

After ensuring that the wiring is reliable and the wire sequence is correct, install the terminal protection cover in place.

### 4.9 Start up the inverter


- Step 1: Close the circuit breaker of the battery.
- Step 2: Press the rocker switch on the bottom of inverter, the screen and indicators light up to indicate that the inverter has been activated.
- Step 3: Sequential close of the circuit breakers for PV, AC input and AC output.
- Step 4: Start the loads one by one in order of power from small to large.



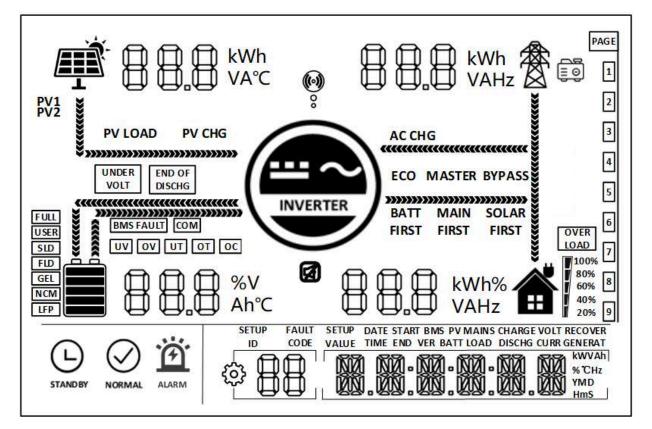
# 5. Operation

# 5.1 Operation and display panel

The operation and display panel below includes 1 LCD screen, 3 indicator lights, 4 touchable keys.



### • Touchable Keys


| Touchable Keys | Description                                    |  |
|----------------|------------------------------------------------|--|
| SET            | To enter/exit the setting menu                 |  |
|                | To next selection                              |  |
| DOWN           | To previous selection                          |  |
| $\bigcirc$     | To confirm/enter the selection in setting menu |  |



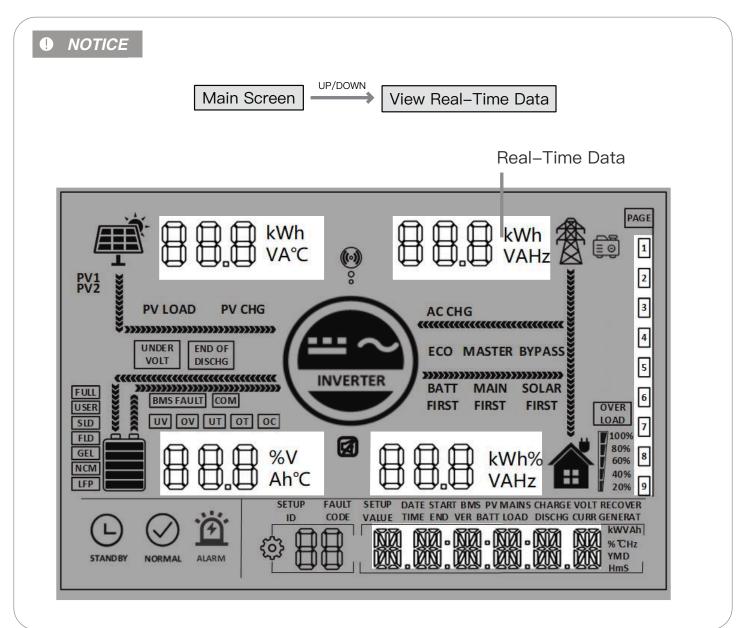
#### LED Indicators

| Indicators    | Color                  | Description                            |  |
|---------------|------------------------|----------------------------------------|--|
|               | Orean                  | Continued: utility grid by-pass output |  |
| AC/INV        | Green                  | Flash: inverter output                 |  |
|               | Vallaur                | Continued: charging complete           |  |
| CHARGE Yellow |                        | Flash: charging                        |  |
| FAULT         | Red Flash: error occur |                                        |  |

• Display panel



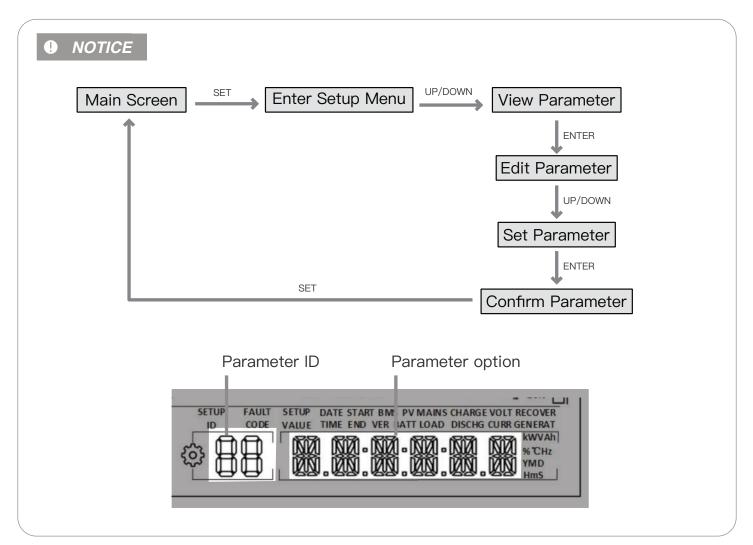
| lcon                                    | Description                                                       | Icon       | Description                |
|-----------------------------------------|-------------------------------------------------------------------|------------|----------------------------|
|                                         | Indicates the PV panel                                            | <b>A</b>   | Indicates the utility grid |
|                                         | Indicates the battery                                             |            | Indicates the generator    |
|                                         | Indicates the inverter is working                                 | <b>~</b> = | Indicates the home load    |
| ©<br>:                                  | Indicates the inverter is<br>communicating with data<br>collector |            | Indicates the buzzer muted |
| ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | Indicates the direction of energy flow                            |            |                            |




| Icon          | Description                                         | lcon             | Description                                             |
|---------------|-----------------------------------------------------|------------------|---------------------------------------------------------|
| STANDBY       | Indicates the inverter is standby                   |                  | Indicates the inverter is working normally              |
|               | Indicates error occur                               | τ <sup>Ω</sup> λ | Indicates setting                                       |
|               | Indicates load power 80%~100%                       |                  | Indicates battery SOC 80%~100%                          |
| Ţ             | Indicates load power 60%~79%                        |                  | Indicates battery SOC 60%~79%                           |
| Į             | Indicates load power 40%~59%                        |                  | Indicates battery SOC 40%~59%                           |
| ı             | Indicates load power 20%~39%                        |                  | Indicates battery SOC 20%~39%                           |
|               | Indicates load power 5%~19%                         |                  | Indicates battery SOC 5%~19%                            |
| UNDER<br>VOLT | Indicates battery under-voltage                     | END OF<br>DISCHG | Battery over-discharge                                  |
| OVER<br>LOAD  | Indicates over-load                                 | BMS FAULT        | Indicates BMS fault                                     |
| COM           | Indicates system communication error                | UV               | Indicates system under-voltage                          |
| OV            | Indicates system over-voltage                       | ர                | Indicates system under-<br>temperature                  |
| ОТ            | Indicates system over-<br>temperature               | OC               | Indicates system over-current                           |
| FULL          | Indicates battery is full                           | USER             | Indicates user defined battery                          |
| SLD           | Indicates sealed lead-acid battery                  | FLD              | Indicates flooded lead-acid battery                     |
| GEL           | Indicates gel lead-acid battery                     | NCM              | Indicates ternary li-ion battery                        |
| LFP           | Indicates LFP li-ion battery                        | ECO              | Indicates energy-saving mode                            |
| PV LOAD       | Indicates PV energy is carrying the load            | PV CHG           | Indicates PV energy is charging the battery             |
| AC CHG        | Indicates AC IN energy is charging the battery      | MAIN<br>FIRST    | Indicates the inverter output mode is mains power first |
| BYPASS        | Indicates the inverter output mode is bypass        | SOLAR<br>FIRST   | Indicates the inverter output mode is solar first       |
| BATT<br>FIRST | Indicates the inverter output mode is battery first |                  |                                                         |



### • View real-time data


In the main screen, press the UP / DOWN keys to view the real-time data of the inverter during operation.



| Page | PV side                       | BAT side                     | AC IN side                  | LOAD side                         | General               |
|------|-------------------------------|------------------------------|-----------------------------|-----------------------------------|-----------------------|
| 1    | PV voltage                    | Batt Voltage                 | AC in voltage               | Single phase voltage              | Current Time          |
| 2    | PV current                    | Batt Current                 | AC in current               | Single phase Current              | Current Date          |
| 3    | PV power                      | Batt Voltage                 | Total AC charging power     | Single phase active power         | PV Total kWh          |
| 4    | PV today kWh                  | Batt Current                 | Today AC charging<br>kWh    | Single phase apparent power       | Load Total kWh        |
| 5    | PV side heat sink temperature | INV Heat Sink<br>Temperature | AC frequency                | AC output frequency               | RS485 Address         |
| 6    | PV rated voltage              | Batt Rated Voltage           | Busbar voltage              | AC output rated power             | Software Version      |
| 7    | Max. PV charging current      | Max.Batt charging current    | Max. AC charging<br>Current | Total AC output active power      | Parallel mode display |
| 8    | /                             | /                            | /                           | Total AC output<br>apparent power | /                     |



# 5.2 Setting



| ID | Parameter Meaning         | Options      | Description                                                                                                                                                                                                                                                                                                                 |
|----|---------------------------|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 88 | Exit                      | ESC          | Exit the setup menu.                                                                                                                                                                                                                                                                                                        |
|    |                           | LIII default | Utility at first priority, utility and solar provide<br>power to load at the same time when solar is<br>available in both hybrid mode and on-grid<br>mode, battery will provide power to load only<br>when utility power is not available. (When the<br>timed discharge function is used, the battery<br>can be discharged) |
| OI | AC output source priority | 561          | Inverter at first priority, utility will provide power<br>to load when the battery voltage below<br>parameter [04] value. When the battery voltage<br>is higher than parameter [05] value or when it<br>is full, switching from utility to inverter.                                                                        |
|    |                           | 50L          | Solar at first priority, utility will provide power<br>to load when solar power is not available and<br>the battery voltage below parameter [04] value.                                                                                                                                                                     |
| 50 | AC output 50.0 default    |              | AC output frequency will adaptive utility                                                                                                                                                                                                                                                                                   |
|    | frequency                 | 60.0         | frequency in bypass mode. Otherwise the output will follow the preset value.                                                                                                                                                                                                                                                |



| ID | Parameter Meaning                                | Options                | Description                                                                                                                                                                                                                                                                                                                                                                                                                   |
|----|--------------------------------------------------|------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|    |                                                  | ) (D)C<br>D) D default | When output range is 220/230V, input voltage range 170~280V.                                                                                                                                                                                                                                                                                                                                                                  |
| 63 | AC input voltage<br>range                        | APL                    | When output range is 220/230V, input voltage range 90~280V, frequency range changes to 40–70 Hz. Can only be set in off–grid mode. Hybrid mode (parameter [34]) automatically changes to ups.                                                                                                                                                                                                                                 |
| 04 | Voltage point of<br>battery switch to<br>utility | 43.6                   | When parameter 01 = SBU/SOL, output source will switch to utility from battery when the battery voltage below the preset value. Setting range:40~52V.                                                                                                                                                                                                                                                                         |
| 05 | Voltage point of<br>utility switch to<br>battery | 56.8                   | When parameter 01 = SBU/SOL, output source will switch to battery from utility when the battery voltage above the preset value. Setting range:48~60V.                                                                                                                                                                                                                                                                         |
|    |                                                  | INI (<br>INIL default  | Solar and utility charging the battery at the<br>same time, solar at the first priority, utility<br>power as a supplement when solar is not<br>sufficient. Solar and utility charging the battery<br>at the same time only in bypass mode, only<br>solar charging can be used when the invert<br>circuit is in operation. Can only be set in off-<br>grid mode. Hybrid mode (parameter [34])<br>automatically changes to snu. |
| 06 | Battery charging<br>mode                         | <u>CU</u> B            | Utility is the first priority in charging, solar charging the battery only when utility is not available.                                                                                                                                                                                                                                                                                                                     |
|    |                                                  | C50                    | Solar is the first priority in charging, utility charging the battery only when solar is not available.                                                                                                                                                                                                                                                                                                                       |
|    |                                                  | 050                    | Only solar charging the battery, no utility charging.                                                                                                                                                                                                                                                                                                                                                                         |
|    | Battery charging                                 | 50                     | ASP4880S180–H, setting range:0~180A                                                                                                                                                                                                                                                                                                                                                                                           |
|    | current                                          | 60                     | ASP48100S200-H, setting range:0~200A.                                                                                                                                                                                                                                                                                                                                                                                         |
|    |                                                  | USER                   | User-defined, user can set all battery parameter.                                                                                                                                                                                                                                                                                                                                                                             |
|    |                                                  | SLd                    | Sealed lead-acid battery.                                                                                                                                                                                                                                                                                                                                                                                                     |
| 08 | Potton ( typo                                    | FLd                    | Flooded lead-acid battery.                                                                                                                                                                                                                                                                                                                                                                                                    |
|    | Battery type                                     | GEL default            | Gel lead-acid battery.                                                                                                                                                                                                                                                                                                                                                                                                        |
|    |                                                  | L14/L15/L16            | LFP li-ion battery, corresponding to batteries 14, 15, 16 series.                                                                                                                                                                                                                                                                                                                                                             |
|    |                                                  |                        | Ternary li-ion battery, corresponding to batteries 13, 14 series.                                                                                                                                                                                                                                                                                                                                                             |
| 09 | Battery boost<br>charging voltage                | 57.6                   | Setting range:48V~58.4V, increment of each click is 0.4V, parameter can be set only when battery type is USER and L14/15/16, N13/14.                                                                                                                                                                                                                                                                                          |
| 10 | Battery boost<br>charging delay time             | 120                    | This refers to the duration of charging time<br>when the voltage reaches the voltage set in<br>parameter 09 during constant voltage charging,<br>the setting range is 5min~900min, in steps of 5<br>minutes.                                                                                                                                                                                                                  |
| 1  | Battery float charging voltage                   | 55.2                   | Setting range: 48V~58.4V, in steps of 0.4V.<br>This parameter cannot be set after successful<br>BMS communication.                                                                                                                                                                                                                                                                                                            |



| ID | Parameter Meaning                                         | Options              | Description                                                                                                                                                                                                                      |
|----|-----------------------------------------------------------|----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 15 | Battery over–<br>discharge voltage<br>(delay off)         | 42                   | When the battery voltage falls below this voltage point and item 13 value is reached, the inverter output will be switched off. Setting range: 40V~48V, in steps of 0.4V.                                                        |
| 13 | Battery over–<br>discharge voltage<br>delay time          | 5                    | When the battery voltage is lower than item 12 of the parameter and the delay time set in this parameter is triggered, the inverter output is switched off, the setting range is 5S~50S, in steps of 5S.                         |
| 14 | Battery under–<br>voltage alarm                           | ԿԿ                   | When the battery voltage falls below this voltage point, alarm will be displayed on the screen and indicator. Setting range: 40V~52V, in steps of 0.4V.                                                                          |
| 15 | Battery under–<br>voltage limit<br>voltage                | 40                   | When the battery voltage falls below this voltage point, the inverter output is switched off immediately. Setting range is 40V~52V, in steps of 0.4V, parameter can be set only when battery type is USER and L14/15/16, N13/14. |
|    |                                                           | OII default          | Disable equalization charging.                                                                                                                                                                                                   |
| 15 | Battery equalization charging                             | ENA                  | Enable equalization charging, parameter can be set only when battery type is Fld/Sld/USER.                                                                                                                                       |
| [] | Battery equalization charging voltage                     | 58                   | Setting range: 48V~58V, in steps of 0.4V,<br>parameter can be set only when battery type is<br>FLd\SLd\USER.                                                                                                                     |
| 18 | Battery equalization charging duration                    | 120                  | Setting range: 5min~900min, in steps of 5mins, parameter can be set only when battery type is FLd\SLd\USER.                                                                                                                      |
| 19 | Battery equalization charging delay time                  | 120                  | Setting range: 5min~900min, in steps of 5mins, parameter can be set only when battery type is FLd\SLd\USER.                                                                                                                      |
| 05 | Battery equalization charging interval                    | BD                   | Setting range: 0~30 days, in steps of 1day, parameter can be set only when battery type is FLd\SLd\USER.                                                                                                                         |
| 21 | Battery equalization<br>charging stop-start               | UL default           | Start equalization charging immediately.                                                                                                                                                                                         |
|    |                                                           | ENA                  | Stop equalization charging immediately.                                                                                                                                                                                          |
| 52 | Power saving mode<br>(Supports stand–<br>alone mode only) | _IIC<br>□I⊐I default | Disable power saving mode.                                                                                                                                                                                                       |
|    |                                                           | ENA                  | Enable power saving mode, When the load<br>power below 50W, the inverter output will<br>switch off after a 5mins delay . When the load<br>is higher than 50W, the inverter automatic<br>restart.                                 |
| 23 | Over–load restart                                         | 56                   | When overload occurs and the output is switched off, the machine will not restart.                                                                                                                                               |
|    |                                                           | ENR default          | When overload occurs and the output is<br>switched off, the machine will restart after a<br>delay of 3 mins. After it reaches 5 cumulative<br>time, the machine will not restart automatically.                                  |



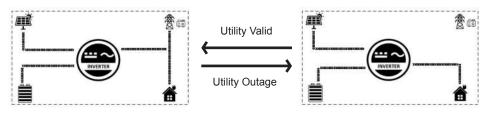
| ID       | Parameter Meaning                  | Options                                                                                                                                                                                                                                                                                                                                                                    | Description                                                                                                                                         |
|----------|------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|
| 24       | Over-temperature<br>restart        | d15                                                                                                                                                                                                                                                                                                                                                                        | Disable over-temperature restart. When over temperature occurs and the output is switched off, the machine will not restart.                        |
|          |                                    | ENA default                                                                                                                                                                                                                                                                                                                                                                | Enable over-temperature restart. When<br>overload occurs and the output is switched<br>off, the machine will restart when the<br>temperature drops. |
| 25       | Buzzer alarm                       | ۵۵                                                                                                                                                                                                                                                                                                                                                                         | Disable buzzer alarm.                                                                                                                               |
| <u> </u> |                                    | END<br>default                                                                                                                                                                                                                                                                                                                                                             | Enable buzzer alarm.                                                                                                                                |
| 26       | Power source<br>switching reminder | ٥:5                                                                                                                                                                                                                                                                                                                                                                        | Disable reminder when the status of the input power source changes.                                                                                 |
|          |                                    | ENE<br>default                                                                                                                                                                                                                                                                                                                                                             | Enable reminder when the status of the input power source changes.                                                                                  |
| 21       | Inverter overload switch to bypass | d15                                                                                                                                                                                                                                                                                                                                                                        | Disable switch to the bypass automatically when the inverter is overload.                                                                           |
|          |                                    | ENE default                                                                                                                                                                                                                                                                                                                                                                | Enable switch to the bypass automatically when the inverter is overload.                                                                            |
| 00       | Max. utility charging              | 60                                                                                                                                                                                                                                                                                                                                                                         | ASP4880S180-H, setting range: 0~100A.                                                                                                               |
| 85       | current                            |                                                                                                                                                                                                                                                                                                                                                                            | ASP48100S200-H, setting range: 0~120A.                                                                                                              |
| BE       | RS485 address                      | 13: 1                                                                                                                                                                                                                                                                                                                                                                      | RS485 address setting range: 1~254. Parallel mode: 1~6.                                                                                             |
|          | AC output mode                     | [31] 515 default                                                                                                                                                                                                                                                                                                                                                           | Settings for stand-alone use.                                                                                                                       |
|          |                                    | [31] PRL                                                                                                                                                                                                                                                                                                                                                                   | Settings for single-phase parallel use.                                                                                                             |
|          |                                    | [31] 3P1/3P2/3P3                                                                                                                                                                                                                                                                                                                                                           | Settings for three-phase parallel use.                                                                                                              |
|          | (Settable only in standby mode)    | All machines in phase 1 must be set as 【3P1】, all machines in phase 2 must be set as 【3P2】, all machines in phase 3 must be set as 【3P3】.                                                                                                                                                                                                                                  |                                                                                                                                                     |
|          |                                    | When the output voltage set in the setting 【38】 is 230Vac: At present, the voltage phase difference between P1–P2, P1–P3 and P2–P3 is 120 degrees. The line voltage between fire wire L1 in phase 1 and fire wire L2 in phase 2 is 230*1.732 = 398Vac, and similarly the line voltage between L1–L3, L2–L3 is 398Vac. The line voltage between L1–N, L2–N, L3–N is 230Vac. |                                                                                                                                                     |
| 32       | RS485<br>communication             | C) C<br>D) default                                                                                                                                                                                                                                                                                                                                                         | Enabling PC and remote monitoring protocols.                                                                                                        |
|          |                                    | 485                                                                                                                                                                                                                                                                                                                                                                        | Enabling BMS communication based on RS485.                                                                                                          |
|          |                                    |                                                                                                                                                                                                                                                                                                                                                                            | Enabling BMS communication based on CAN.                                                                                                            |
| 33       | BMS communication                  | When item 32 is set to 485 or CAN, the corresponding communication protocol must be selected in item 33.                                                                                                                                                                                                                                                                   |                                                                                                                                                     |
|          |                                    | PAC=PACE, RDA=RITAR, AOG=ALLGRAND, OLT=OLITER,<br>HWD=SUNWODA, DAQ=DYNESS, WOW=SRNE, PYL=PYLONTECH,<br>UOL=VILION                                                                                                                                                                                                                                                          |                                                                                                                                                     |



| ID       | Parameter Meaning                                          | Options            | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|----------|------------------------------------------------------------|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 34       | On–grid and mixed load<br>function                         | 013 default        | Disable this function.                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|          |                                                            | ON GRJ             | On-grid function, Solar is charged first and any<br>surplus power after the load demand is met is<br>fed back to the grid. (Item 01 is set to UTI, item<br>03 is set to UPS, item 06 is set to SNU)                                                                                                                                                                                                                                                                                                |
|          |                                                            | mix LOJ            | Mixed load mode, solar is used in priority to<br>charge the battery and any excess energy is<br>used to power the load when available. With<br>backflow preventer function, solar power is not<br>fed back to the grid. (Item 01 is set to UTI, item<br>03 is set to UPS, item 06 is set to SNU)                                                                                                                                                                                                   |
| 35       | Battery under voltage<br>recover point                     | 52                 | When the battery is under-voltage, the battery voltage needs to be greater than this setting to restore the battery inverter AC output. Setting range: 44V~54.4V.                                                                                                                                                                                                                                                                                                                                  |
| TE       | Battery full recharge<br>voltage point                     | 52                 | Inverter stops charging when the battery is full.<br>Inverter resumes charging when the battery<br>voltage below this value. Setting range:<br>44V~54V.                                                                                                                                                                                                                                                                                                                                            |
| 38       | AC output voltage                                          | 055                | Setting range: 200/208/220/230/240Vac                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|          |                                                            | 38 LC SET          | Max. battery charging current not greater than the value of setting [07]                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 39       | Charge current limitine<br>method<br>(when BMS is enabled) | 38 LC 8775 default | Max. battery charging current not greater than the limit value of BMS                                                                                                                                                                                                                                                                                                                                                                                                                              |
|          |                                                            | 38 LE INV          | Max. battery charging current not greater than the logic judgements value of the inverter                                                                                                                                                                                                                                                                                                                                                                                                          |
| 40       | 1st slot start charging                                    | 00:00:00           | Setting range: 00:00:00–23:59:00                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|          | 1st slot end charging                                      | 88:88:88           | Setting range: 00:00:00-23:59:00                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 42       | 2nd slot start charging                                    | 88:88:88           | Setting range: 00:00:00-23:59:00                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|          | 2nd slot end charging                                      | 00:00:00           | Setting range: 00:00:00-23:59:00                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| <u> </u> | 3rd slot start charging                                    | 00:00:00           | Setting range: 00:00:00-23:59:00                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 45       | 3rd slot end charging                                      | 00:00:00           | Setting range: 00:00:00-23:59:00                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|          | Time slot charging<br>function                             | dig default        | Disable this function.                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 45       |                                                            | ENA                | Enable this function, AC output source mode<br>will switch to SBU, utility charging the battery<br>and carry load only in charging time slot which<br>user set or the battery is under voltage. If time<br>slot discharging function is also enabled, AC<br>output source mode will switch to UTI, utility<br>charging the battery only in charging time slot<br>which user set, and switch to battery charging<br>in discharging time slot or utility power failure.<br>(pure off–grid mode only) |
| 47       | 1st slot start discharging                                 | 88:88:88           | Setting range: 00:00:00-23:59:00                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 48       | 1st slot end discharging                                   | 00:00:00           | Setting range: 00:00:00-23:59:00                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 49       | 2nd slot start discharging                                 | 00:00:00           | Setting range: 00:00:00-23:59:00                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 50       | 2nd slot end discharging                                   | 00:00:00           | Setting range: 00:00:00-23:59:00                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|          | 3rd slot start discharging                                 | 00:00:00           | Setting range: 00:00:00-23:59:00                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |

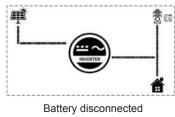


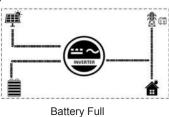
| ID  | Parameter Meaning                 | Options      | Description                                                                                                                                                            |
|-----|-----------------------------------|--------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 52  | 3rd slot end discharging          | 00:00:00     | Setting range: 00:00:00-23:59:00                                                                                                                                       |
| 53  |                                   | olic default | Disable this function.                                                                                                                                                 |
|     | Time slot discharging<br>function | ENA          | Enable this function, AC output source<br>mode will switch to UTI, battery<br>discharging only in discharging time slot<br>which user set or utility is not available. |
| 54  | Local date                        | 00:00:00     | YY/MM/DD.<br>Setting range: 00:01:01–99:12:31                                                                                                                          |
| 55  | Local time                        | 88:88:88     | Setting range: 00:00:00-23:59:59                                                                                                                                       |
| 57  | Stop charging current             | 2            | Charging stops when the charging current is less than the set value. (unit:A)                                                                                          |
| 58  | Discharging alarm SOC             | 15           | Triggers an alarm when the battery SOC is less than the set value. (unit:%)                                                                                            |
| 59  | Discharging cutoff SOC            | 5            | Stops discharging when the battery SOC is less than the set value. (unit:%)                                                                                            |
| 60  | Charging cutoff SOC               | 100          | Stops charging when the battery SOC is higher than the set value. (unit:%)                                                                                             |
| 61  | Switching to utility SOC          |              | Switch to utility power when the battery SOC is less than this setting. (unit:%)                                                                                       |
| 53  | Switching to inverter SOC         | 100          | Switches to inverter output mode when SOC is higher than this setting. (unit:%)                                                                                        |
| 63  | N–PE bonding automatic            | di S default | Prohibit automatic switching of N–PE bonding.                                                                                                                          |
|     | switching function                | ENA          | Allow automatic switching of N–PE bonding.                                                                                                                             |
| -11 | PV energy priority                | CHE default  | PV energy gives priority to battery charging, then on-grid charging.                                                                                                   |
|     |                                   | Юd           | PV energy is prioritized for grid generation.                                                                                                                          |




## 5.3 AC output mode

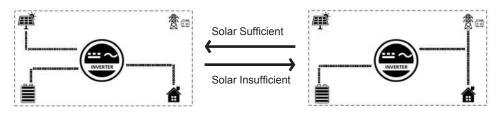
The AC output mode corresponds to parameter setting item II and ∃Ч, which allows the user to set the AC output power source manually.


#### • Utility Priority Output 🗄 🖽 (default)


Utility at first priority, utility and solar provide power to load at the same time when solar is available, battery will provide power to load only when utility power is not available.(Priority: utility>solar>battery)

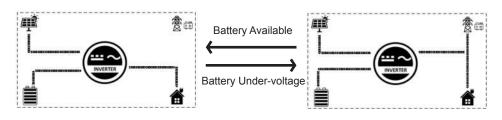


#### • Solar and Utility Hybrid Output ∃4 ™X L0d


In **U** mode, when not connected to the battery or when the battery is full, the solar and the utility supply power to the load at the same time.(Priority: solar>utility>battery)






Solar Priority Output II 50L

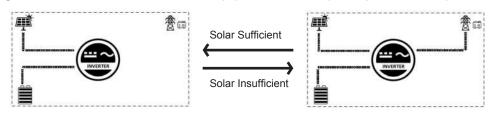
Solar provides power to the loads as first priority. If solar is not available, the utility grid will provide power to the loads. This mode maximizes solar energy while maintaining battery power and is suitable for areas with relatively stable power grids. (Priority: solar>utility>battery)



• Inverter Priority Output 🛙 561

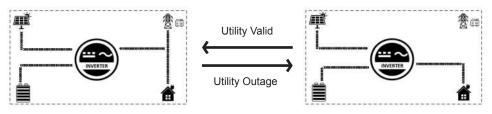
Solar provides power to the loads as first priority. If solar is not sufficient or not available, the battery will be used as a supplement to provide power to the loads. When the battery voltage reaches the value of parameter D4 (Voltage point of battery switch to utility) will switch to utility to provide power to the load, This model makes maximum use of DC energy and is used in areas where the grid is stable. (Priority: solar>battery>utility)





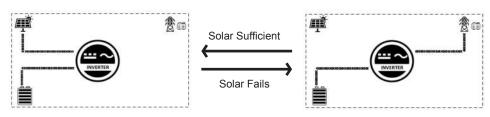

#### 5.4 Battery charging mode

The charging mode corresponds to parameter setting item 06, which allows the user to set the charging mode manually.


#### • Hybrid Charging 5111 (default)

Solar and utility charging the battery at the same time, solar at the first priority, utility power as a supplement when solar power is not sufficient. This is the fastest way to charge and is suitable for areas with low power supply, providing customers with sufficient back–up power.(Source priority: solar>utility)




#### Utility Priority Charging Eub

The utility power gives priority to charging the battery, and PV charging is only activated when the utility power is not available.(Source priority: utility>solar)



#### Solar Priority Charging [50]

Solar priority charging, with utility charging only activated when the solar fails. By making full use of solar power during the day and switching to utility charging at night, battery power can be maintained and is suitable for applications in areas where the grid is relatively stable and electricity prices are more expensive.(Source priority: solar>utility)



• Only Solar Charging 050

Solar charging only, no mains charging is activated. This is the most energy–efficient method, with all the battery power coming from solar energy, and is usually used in areas with good radiation conditions.



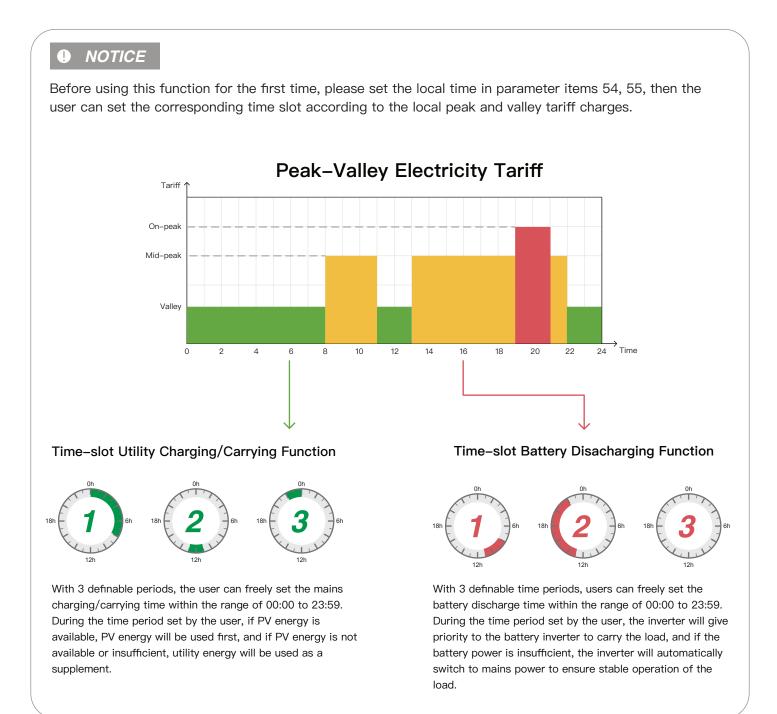


# OFF-grid and on-grid mode settings

| Mode              | Setting | Options | Meaning                           | Priority              | Features                                                                                                                                                             |
|-------------------|---------|---------|-----------------------------------|-----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                   |         | UTI     | Utility priority                  | utility-solar-battery | This mode maximizes access to available<br>power while maintaining battery power for<br>emergency storage and is suitable for<br>areas with unstable power supplies. |
| Output<br>modes   | 01      | SOL     | Solar priority                    | solar-utility-battery | This mode maximizes the use of solar<br>power while maintaining battery power as<br>emergency energy storage.                                                        |
|                   |         | SBU     | Battery priority                  | solar-battery-utility | This model maximizes the use of DC<br>energy and reduces the cost of electricity,<br>and is suitable for areas where electricity is<br>expensive but stable.         |
|                   |         | SNU     | Utility and solar hybrid charging | solar-hybrid-utility  | Fastest charging.                                                                                                                                                    |
|                   |         | CUB     | Utility priority charging         | utility-solar         | Solar charging is only activated when utility power is not available.                                                                                                |
| Charging<br>modes | 06      | CSO     | Solar priority charging           | solar–utility         | Only when solar is not available, the utility<br>is activated, which is suitable for areas<br>with a stable grid and expensive electricity<br>prices.                |
|                   |         | OSO     | Only solar charging               | solar                 | Solar charging only, no utility charging.                                                                                                                            |

# Hybrid energy storage application

| Mode                                                      | Setting | Options | Meaning                                                                                        | Priority                                                                                                                                                                                                                                                                                                                                                                             | Features                                                                                                                                                                  |  |  |
|-----------------------------------------------------------|---------|---------|------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
|                                                           |         | DIS     | Means that th                                                                                  | Means that the hybrid energy storage application is switched off and the system switches to off-grid applications by default.                                                                                                                                                                                                                                                        |                                                                                                                                                                           |  |  |
| Output<br>modes                                           | 34      | ON GRD  | On-grid                                                                                        | The priority of electricity use can be                                                                                                                                                                                                                                                                                                                                               | Feeds excess electricity or battery storage back to the grid to help customers generate revenue.                                                                          |  |  |
|                                                           |         | MIX LOD | Hybrid                                                                                         | set in item 46, 53 and 71.                                                                                                                                                                                                                                                                                                                                                           | Backflow preventer, mixed utility and<br>solar, supporting battery–free use,<br>helping customers to reduce<br>electricity costs.                                         |  |  |
|                                                           |         | DIS     | W                                                                                              | ith this function disabled, the mains do                                                                                                                                                                                                                                                                                                                                             | es not charge the battery.                                                                                                                                                |  |  |
| Time-slot<br>mains<br>charging,<br>with load<br>function. | 46      | ENA     | Enable time–<br>slot mains<br>charging, with<br>load function                                  | When this function is enabled, the<br>user can set a time period from 40 to<br>45 items. During this period, if solar<br>power is available, priority will be<br>given to using solar power for<br>charging; when solar power is<br>insufficient, utility power will be used<br>for mixed charging, and when there is<br>no solar power, utility power will be<br>used for charging. | Can take advantage of peak and<br>valley tariffs to store solar electricity<br>and valley electricity in storage<br>batteries.                                            |  |  |
|                                                           |         | DIS     | With this function disabled, battery storage does not feed back into the grid or carry a load. |                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                           |  |  |
| Time-slot<br>battery<br>discharging<br>function.          | 53      | ENA     | Enable time–<br>slot battery<br>discharging<br>function                                        | When this function is enabled, the<br>user can set a time period in items 47<br>to 52. During this period, if solar<br>power is not sufficient to carry the<br>load or is not sufficient to on-grid at<br>full power, battery power is allowed to<br>be used to carry the load or on-grid.                                                                                           | Can take advantage of peak and<br>valley tariffs to reduce utility use at<br>peak prices or to feed battery<br>storage back into the grid for higher<br>on-grid benefits. |  |  |
| Solar power<br>priority                                   | 71      | CHG     | Solar priority<br>charging                                                                     | If this option is selected, solar priority charging, and when the battery is fully charged, the residual power can be on–grid.                                                                                                                                                                                                                                                       | Battery power can be maintained as<br>emergency storage, and the<br>remaining solar power can be on-<br>grid or carried.                                                  |  |  |
|                                                           |         | LOD     | Solar power<br>priority on–<br>grid                                                            | If this option is selected, solar power<br>will feed back to the grid as a priority<br>and, if sufficient, the excess power is<br>used to recharge the batteries.                                                                                                                                                                                                                    | No battery storage. Helping users get more out of their electricity generation.                                                                                           |  |  |

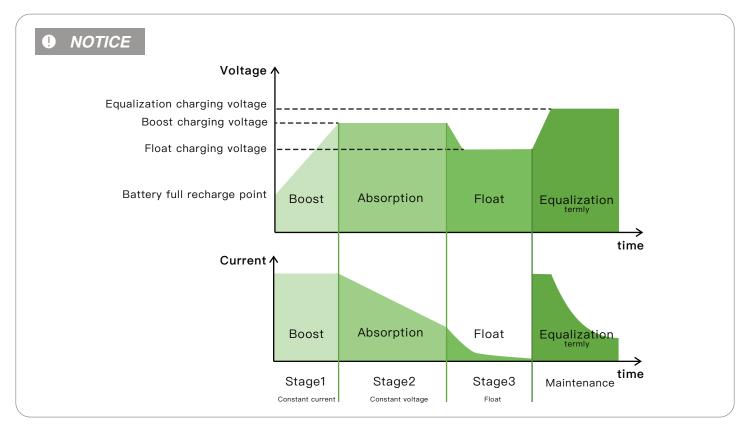



### 5.5 Time-slot charging/discharging function

The ASP series is equipped with a time–slot charging and discharging function, which allows users to set different charging and discharging periods according to the local peak and valley tariffs, so that the utility power and PV energy can be used rationally.

When mains electricity is expensive, the battery inverter is used to carry the load; when the mains electricity is cheap, the mains electricity is used to carry the load and charge, which can help customers to save electricity costs to the greatest extent.

The user can turn on/off the time-slot charging/discharging function in setup menu parameter 46 and 53. And set charging and discharging slot in parameter 40-45, 47-52. Below are examples for users to understand the function.



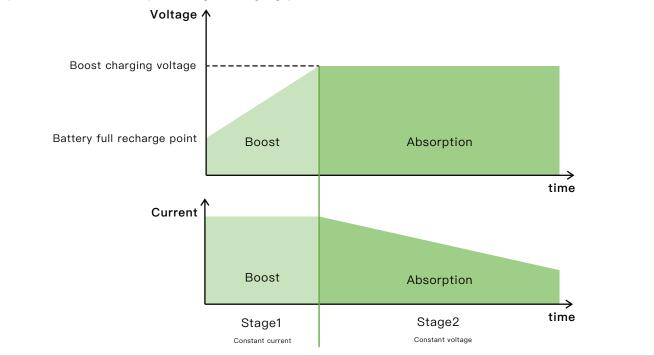



#### 5.6 Battery parameter

#### • Lead-acid battery

| Devementer /Dettern / true       | Sealed | Gel    | Flooded | User-defined      |
|----------------------------------|--------|--------|---------|-------------------|
| Parameter/Battery type           | SLa    | GEL    | FLd     | USER              |
| Over-voltage cut-off voltage     | 60V    | 60V    | 60V     | 60V               |
| Equalization charging voltage    | 58V    | 56.8V  | 58V     | 40~60V settable   |
| Boost charging voltage           | 57.6V  | 56.8V  | 57.6V   | 40~60V settable   |
| Float charging voltage           | 55.2V  | 55.2V  | 55.2V   | 40~60V settable   |
| Under-voltage alarm voltage      | 44V    | 44V    | 44V     | 40~60V settable   |
| Under-voltage cut-off<br>voltage | 42V    | 42V    | 42V     | 40~60V settable   |
| Discharging limit voltage        | 40V    | 40V    | 40V     | 40~60V settable   |
| Over-discharge delay time        | 5s     | 5s     | 5s      | 1~30s settable    |
| Equalization charging duration   | 120min | _      | 120min  | 0~600min settable |
| Equalization charging interval   | 30d    | _      | 30d     | 0~250d settable   |
| Boost charging duration          | 120min | 120min | 120min  | 10~600m settable  |

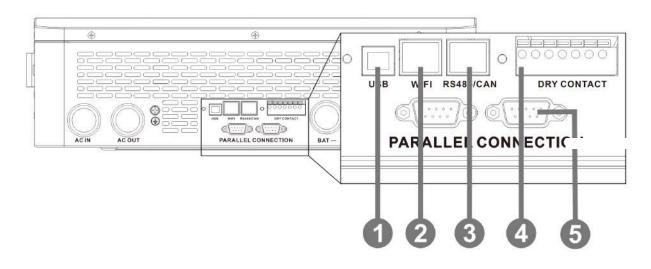





#### • Li-ion battery

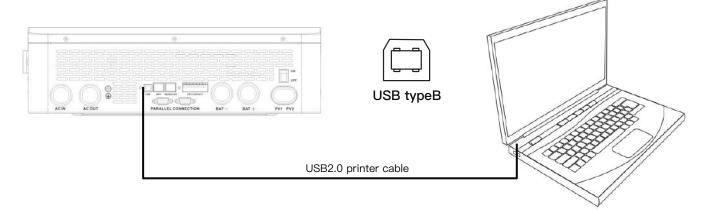
| Decemptor / Potton / type         | Ter                | nary               | LFP                |                    |                    | User-<br>defined      |
|-----------------------------------|--------------------|--------------------|--------------------|--------------------|--------------------|-----------------------|
| Parameter/Battery type            | EIM                | 1114               | L15                | LIS                | L14                | USER                  |
| Over-voltage cut-off<br>voltage   | 60V                | 60V                | 60V                | 60V                | 60V                | 60V                   |
| Equalization charging voltage     | _                  | _                  | _                  | _                  | _                  | 40~60V<br>settable    |
| Boost charging voltage            | 53.2V              | 57.6V              | 56.8V              | 53.2V              | 49.2V              | 40~60V<br>settable    |
| Float charging voltage            | 53.2V              | 57.6V              | 56.8V              | 53.2V              | 49.2V              | 40~60V<br>settable    |
| Under-voltage alarm voltage       | 43.6V              | 46.8V              | 49.6V              | 46.4V              | 43.2V              | 40~60V<br>settable    |
| Under-voltage cut-off<br>voltage  | 38.8V              | 42V                | 48.8V              | 45.6V              | 42V                | 40~60V<br>settable    |
| Discharging limit voltage         | 36.4V              | 39.2V              | 46.4V              | 43.6V              | 40.8V              | 40~60V<br>settable    |
| Over-discharge delay time         | 30s                | 30s                | 30s                | 30s                | 30s                | 1~30s<br>settable     |
| Equalization charging duration    | -                  | -                  | _                  | _                  | _                  | 0~600min<br>settable  |
| Equalization charging<br>interval | _                  | _                  | _                  | _                  | _                  | 0~250d<br>settable    |
| Boost charging duration           | 120min<br>settable | 120min<br>settable | 120min<br>settable | 120min<br>settable | 120min<br>settable | 10~600min<br>settable |

#### 


If no BMS is connected, the inverter will charge according to the battery voltage with a preset charging curve. When the inverter communicates with the BMS, it will follow the BMS instructions to perform a more complex stage charging process.





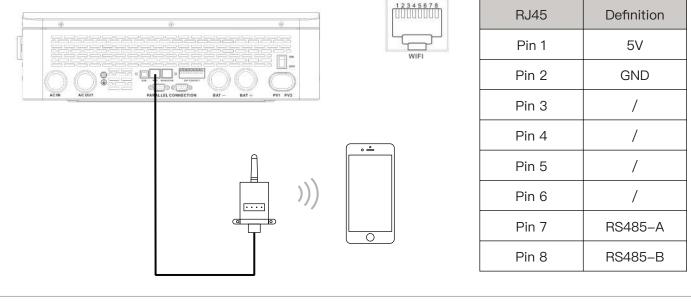

# 6. Communication

## 6.1 Overview



| 1 | USB-B port       | 2 | WIFI port | 3        | RS485/CAN port |
|---|------------------|---|-----------|----------|----------------|
| 4 | Dry contact port | 5 | Parallel  | connecti | on port        |

#### 6.2 USB-B port




The user can read and modify device parameters through this port by using the host software. Please contact us for the host software installation package if you require one.



# 6.3 WIFI port

The WIFI port is used to connect to the Wi–Fi/GPRS data acquisition module, which allows the user to view the operating status and parameters of the inverter via the mobile phone APP.



#### 

The Wi–Fi/GPRS data acquisition module need to be purchased separately. User can scan the QR code to download the mobile APP.



**RJ45** 

# 6.4 RS485/CAN port

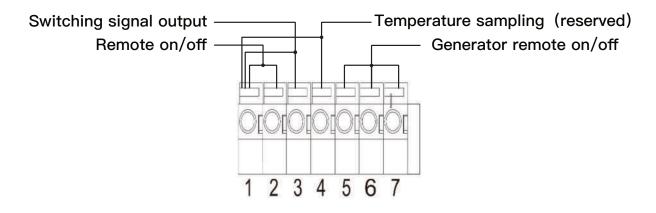
The RS485/CAN port is used to connect to the BMS of Li–ion battery.



| 11010 | Dominion |
|-------|----------|
| Pin 1 | RS485B   |
| Pin 2 | RS485A   |
| Pin 3 | /        |
| Pin 4 | CANH     |
| Pin 5 | CANL     |
| Pin 6 | /        |
| Pin 7 | RS485-A  |
| Pin 8 | RS485-B  |

Definition




If you need the inverter to communicate with the lithium battery BMS, please contact us for the communication protocol or to upgrade the inverter to the corresponding software program.



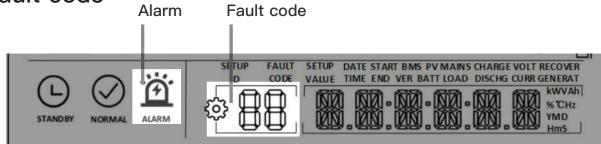
#### 6.5 Dry contact

Dry contact port with 4 functions:

1. Remote switch on/off 2. Switching signal output 3. Battery temperature sampling 4. Generator remote start/ stop



| Function                        | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|---------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Remote switch on/off            | When pin 1 is connected with pin 2, the inverter will switched off the AC output.<br>When pin1 is disconnected from pin2, the inverter outputs normally.                                                                                                                                                                                                                                                                                                                 |
| Switching signal output         | When the voltage of battery reaches the under-voltage limit voltage (parameter 15), pin 3 to pin 1 voltage is 0V, When the battery charging/discharging normally pin 3 to pin 1 voltage is 5V.                                                                                                                                                                                                                                                                           |
| Temperature sampling (reserved) | Pin 1 & Pin 4 can be used for battery temperature sampling compensation.                                                                                                                                                                                                                                                                                                                                                                                                 |
| Generator remote start/stop     | <ul> <li>When the voltage of battery reaches the under-voltage alarm voltage (parameter 14) or voltage point of utility switch to battery (parameter 04), pin 6 to pin 5 normal open, pin 7 to pin 5 normal close.</li> <li>When the voltage of battery reaches the voltage point of battery switch to utility (parameter 05) or battery is full, pin 6 to pin 5 normal close, pin 7 to pin 5 normal open. (Pin 5/6/7 outputs 125Vac/1A, 230Vac/1A, 30Vdc/1A)</li> </ul> |


#### 

If you need to use the remote start/stop function of the generator with dry contact, ensure that the generator has ATS and supports remote start/stop.



# 7. Fault and Remedy

## 7.1 Fault code



| Fault Code | Meaning          | Does it Affect the outputs | Instructions                                        |
|------------|------------------|----------------------------|-----------------------------------------------------|
| 01         | BatVoltLow       | Yes                        | Battery under-voltage alarm                         |
| 50         | BatOverCurrSw    | Yes                        | Battery discharge over-current, software protection |
| 03         | BatOpen          | Yes                        | Battery disconnected alarm                          |
| 04         | BatLowEod        | Yes                        | Battery under-voltage stop discharging alarm        |
| 05         | BatOverCurrHw    | Yes                        | Battery over-current hardware protection            |
| 05         | BatOverVolt      | Yes                        | Battery over-voltage protection                     |
| 01         | BusOverVoltHw    | Yes                        | Busbar over-voltage hardware protection             |
| 08         | BusOverVoltSw    | Yes                        | Busbar over-voltage software protection             |
| 09         | PvVoltHigh       | Yes                        | PV input over-voltage protection                    |
| 10         | PvBoostOCSw      | No                         | Boost circuit over-current software protection      |
| #          | PvBoostOCHw      | No                         | Boost circuit over-current hardware protection      |
| 12         | SpiCommErr       | Yes                        | Master-slave chip SPI communication failure         |
| 8          | OverloadBypass   | Yes                        | Bypass overload protection                          |
| ١٩         | OverloadInverter | Yes                        | Inverter overload protection                        |
| 15         | AcOverCurrHw     | Yes                        | Inverter over-current hardware protection           |
| 15         | AuxDSpReqOffPWM  | Yes                        | Slave chip request switch off failure               |
| П          | InvShort         | Yes                        | Inverter short-circuit protection                   |
| 18         | Bussoftfailed    | Yes                        | Inverter busbar soft start failed                   |
| 19         | OverTemperMppt   | No                         | MPPT heat sink over-temperature protection          |
| 20         | OverTemperInv    | Yes                        | Inverter heat sink over-temperature protection      |
| 15         | FanFail          | Yes                        | Fan failure                                         |
| 52         | EEPROM           | Yes                        | Reservoir failure                                   |



| Fault Code | Meaning                                      | Does it Affect the outputs | Instructions                                                 |
|------------|----------------------------------------------|----------------------------|--------------------------------------------------------------|
| 23         | ModelNumErr                                  | Yes                        | Wrong model                                                  |
| 24         | Busdiff                                      | Yes                        | Busbar voltage imbalance                                     |
| 25         | BusShort                                     | Yes                        | Busbar short circuit                                         |
| 25         | Rlyshort                                     | Yes                        | Inverter output back flow to bypass                          |
| 28         | LinePhaseErr                                 | Yes                        | Utility input phase fault                                    |
| 29         | BusVoltLow                                   | Yes                        | Busbar under-voltage protection                              |
| 30         | BatCapacityLow1                              | No                         | Battery SOC below 10% alarm (Only enable<br>BMS take effect) |
| E          | BatCapacityLow2                              | No                         | Battery SOC below 5% alarm (Only enable<br>BMS take effect)  |
| 32         | BatCapacityLowStop                           | Yes                        | Battery dead (Only enable BMS take effect)                   |
| 33         | CtrlCanCommErr                               | Yes                        | Parallel control can communication fault                     |
| 34         | CanCommFault                                 | Yes                        | Parallel can communication fault                             |
| 35         | ParaAddrErr                                  | Yes                        | Parallel ID (communication address) is incorrectly           |
| TE         | ParaShareCurrErr                             | Yes                        | Parallel flow equalisation fault                             |
| 38         | ParaBattVoltDiff                             | Yes                        | Parallel mode, large differences in battery voltage          |
| 39         | ParaAcSrcDiff                                | Yes                        | Parallel mode, inconsistent mains input source               |
| 40         | ParaHwSynErr                                 | Yes                        | Parallel mode, hardware sync signal failure                  |
| Ч          | InvDcVoltErr                                 | Yes                        | DC component of the inverter voltage is abnormal             |
| 42         | SysFwVersionDiff                             | Yes                        | Inconsistent parallel program versions                       |
| 43         | ParaLineContErr                              | Yes                        | Parallel wiring fault                                        |
| 44         | Serial number error                          | Yes                        | No serial number set at factory                              |
| 45         | Phase merging unit<br>configured incorrectly | Yes                        | Item [31] is wrongly set                                     |
| 58         | BMSComErr                                    | No                         | BMS communication failure                                    |
| 59         | BMSErr                                       | No                         | BMS failures occur                                           |
| 60         | BMSUnderTem                                  | No                         | BMS under-temperature alarm (Only enable<br>BMS take effect) |
| 61         | BMSOverTem                                   | No                         | BMS over-temperature alarm (Only enable BMS take effect)     |
| 52         | BMSOverCur                                   | No                         | BMS over-current alarm (Only enable BMS take effect)         |
| 63         | BMSUnderVolt                                 | No                         | BMS under–voltage alarm (Only enable BMS take effect)        |
| 64         | BMSOverVolt                                  | No                         | BMS over-voltage alarm (Only enable BMS take effect)         |



# 7.2 Troubleshooting

| Fault Code | Meaning                                                            | Causality                                                                          | Remedy                                                                                                                                                                                                                     |  |
|------------|--------------------------------------------------------------------|------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| /          | Screen no display                                                  | No power input, or in sleep mode.                                                  | Closing the circuit breaker.<br>Ensure the rocker switch is ON.<br>Push any button on the panel to exit sleep<br>mode.                                                                                                     |  |
| 01         | Battery under-voltage                                              | The battery voltage is<br>lower than the value set in<br>parameter [14].           | Charge the battery and wait until the battery voltage is higher than the value set in the parameter item [14].                                                                                                             |  |
| 03         | Battery not connected                                              | The battery is not<br>connected, or the BMS in<br>discharge protection             | Check whether the battery is reliably<br>connected; check whether the circuit breaker<br>of the battery is not closed; ensure that the<br>BMS of the Li–ion battery can communicate<br>properly.                           |  |
| 04         | Battery over-discharge                                             | The battery voltage is<br>lower than the value set in<br>the parameter [12].       | Manual reset: Power off and restart.<br>Automatic reset: charge the battery so that<br>the battery voltage is higher than the value<br>set in the parameter item [35].                                                     |  |
| 05         | Battery over-voltage<br>when charging                              | Battery is in over-voltage condition.                                              | Manually power off and restart.<br>Check to see if the battery voltage exceeds<br>the limit. If it exceeds, the battery needs to<br>be discharged until the voltage is below the<br>battery's over-voltage recovery point. |  |
| 13         | Bypass over-load<br>(software detection)                           | Bypass output power or<br>output current overload for<br>a certain period of time. | Reduce the load power and restart the                                                                                                                                                                                      |  |
| М          | Inverter over–<br>load(software detection)                         | Inverter output power or output current overload for a certain period of time.     | device. Please refer to item 11 of the protection features for more details.                                                                                                                                               |  |
| 19         | Heat sink of PV input<br>over-temperature<br>(software detection)  | Heat sink of PV input<br>temperature exceeds 90°C<br>for 3s.                       | Resume normal charge and discharge when the temperature of the heat sink has cooled                                                                                                                                        |  |
| 20         | Heat sink of inversion<br>over-temperature<br>(software detection) | Heat sink of inversion<br>temperature exceeds 90°C<br>for 3s.                      | to below the over-temperature recovery temperature.                                                                                                                                                                        |  |
| 51         | Fan failure                                                        | Fan failure detects by hardware for 3s.                                            | Manually toggle the fan after switching off to check for blockage by foreign objects.                                                                                                                                      |  |
| 26         | AC Input relay short–<br>circuit                                   | Relay for AC input sticking                                                        | Manually power off and restart; if the fault<br>reappears after restarting,You need to<br>contact the after–sales service to repair the<br>machine.                                                                        |  |
| 28         | Utility input phase fault                                          | AC input phase does not coincide with AC output phase                              | Ensure that the phase of the AC input is the same as the phase of the AC output, e.g. if the output is in split–phase mode, the input must also be in split–phase.                                                         |  |

#### 

If you encounter a fault with the product that cannot be solved by the methods in the table above, please contact our after-sales service for technical support and do not disassemble the equipment yourself.



# 8. Protection and Maintenance

## 8.1 Protection features

| No | Protection Feature                         | Instruction                                                                                                                                                                                                                                                                                                                                              |
|----|--------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1  | PV input current/power limiting protection | When the charging current or power of the PV array configured exceeds the PV input rated value, the inverter will limit the input power and charge at the rated.                                                                                                                                                                                         |
| 2  | PV input over-voltage                      | If the PV voltage exceeds the maximum value allowed by the hardware, the machine will report a fault and stop the PV boost to output a sinusoidal AC wave.                                                                                                                                                                                               |
| 3  | PV night reverse current protection        | At night, the battery is prevented from discharging through the PV module because the battery voltage is greater than the voltage of PV module.                                                                                                                                                                                                          |
| 4  | AC input over-voltage protection           | When the AC input voltage of each phase exceeds 280V, the mains charging will be stopped and switched to the inverter mode.                                                                                                                                                                                                                              |
| 5  | AC input under-voltage protection          | When the AC input voltage of each phase below 170V, the utility charging will be stopped and switched to the inverter mode.                                                                                                                                                                                                                              |
| 6  | Battery over-voltage protection            | When the battery voltage reaches the over-voltage cut-off point, the PV and the utility will automatically stop charging to prevent the battery from being overcharged and damaged.                                                                                                                                                                      |
| 7  | Battery under-voltage protection           | When the battery voltage reaches the under-voltage cut-off point,<br>the inverter will automatically stop the battery discharge to prevent<br>damage from over-discharging the battery.                                                                                                                                                                  |
| 8  | Battery over-current protection            | After a period when the battery current exceeds that allowed by the hardware, the machine will switch off the output and stop discharging the battery.                                                                                                                                                                                                   |
| 9  | AC output short-circuit protection         | When a short-circuit fault occurs at the load output terminal, the AC output is immediately turned off and turned on after 1 second. If the output load terminal is still short-circuited after 3 attempts, the inverter must be manually restarted after first removing the short-circuit fault from the load before the normal output can be restored. |
| 10 | Heat sink over-temperature protection      | When the internal temperature of the inverter is too high, the inverter will stop charging and discharging; when the temperature returns to normal, the inverter will resume charging and discharging.                                                                                                                                                   |
| 11 | Inverter over–load<br>protection           | After triggering the overload protection the inverter will resume<br>output after 3 minutes, 5 consecutive overloads will switch off the<br>output until the inverter is restarted.                                                                                                                                                                      |



| No | Protection Feature                    | Instruction                                                                                                                                                                                                                                |
|----|---------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 11 | Inverter over–load<br>protection      | $(102\% < load < 110\%) \pm 10\%$ : error and output shutdown after 5min;<br>$(110\% < load < 125\%) \pm 10\%$ : error and output shutdown after 10s.<br>Load > 125% ±10%: error reported and output switched off after 5s.                |
| 12 | AC output reverse                     | Prevents AC back flow from the battery inverter to the bypass AC input.                                                                                                                                                                    |
| 13 | Bypass over-current protection        | Built-in AC input over-current protection circuit breaker.                                                                                                                                                                                 |
| 14 | Bypass phase inconsistency protection | When the phase of the bypass input and the phase of the inverter<br>split do not match, the inverter disables switching to the bypass<br>output to prevent the load from dropping out or short-circuiting<br>when switching to the bypass. |

#### 8.2 Maintenance

To maintain optimum and long-lasting working performance, we recommend that the following items are checked twice a year.

- 1. Ensure that the airflow around the inverter is not blocked and remove any dirt or debris from the radiator.
- 2. Check that all exposed conductors are not damaged by sunlight, friction with other surrounding objects, dry rot, insect or rodent damage, etc. The conductors need to be repaired or replaced if necessary.
- 3. Verify that the indications and displays are consistent with the operation of the equipment, note any faults or incorrect displays and take corrective action if necessary.
- 4. Check all terminals for signs of corrosion, insulation damage, high temperatures or burning/discolouration and tighten terminal screws.
- 5. Check for dirt, nesting insects and corrosion, clean anti insects net as required.
- 6. If the lightning arrester has failed, replace the failed arrester in time to prevent lightning damage to the inverter or other equipment of the user.

#### A DANGER

• Make sure that the inverter is disconnected from all power sources and that the capacitors are fully discharged before carrying out any checks or operations to avoid the risk of electric shock.

The Company shall not be liable for damage caused by :

- 1. Damage caused by improper use or use in a wrong location.
- 2. Photovoltaic modules with an open circuit voltage exceeding the maximum permissible voltage.
- 3. Damage caused by the operating temperature exceeding the restricted operating temperature range.
- 4. Dismantling and repair of the inverter by unauthorised persons.
- 5. Damage caused by force majeure: damage during transport or handling of the inverter.



# 9. Datasheet

| MODEL                                | ASP4880S180-H                                                                                                                                                                                                                                                                                                                                                                                                                         | ASP48100S200-H | CAN BE |
|--------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|--------|
| INVERTER OUTPUT                      |                                                                                                                                                                                                                                                                                                                                                                                                                                       |                |        |
| Rated Output Power                   | 8,000W                                                                                                                                                                                                                                                                                                                                                                                                                                | 10,000W        |        |
| Max.Peak Power                       | 12,000W                                                                                                                                                                                                                                                                                                                                                                                                                               | 15,000W        |        |
| Rated Output Voltage                 | 230Vac(Single phase)                                                                                                                                                                                                                                                                                                                                                                                                                  |                | Y      |
| Load Capacity of Motors              | 5HP                                                                                                                                                                                                                                                                                                                                                                                                                                   | 6HP            |        |
| Rated AC Frequency                   | 50/6                                                                                                                                                                                                                                                                                                                                                                                                                                  | 50Hz           | Y      |
| Waveform                             | Pure Sine Wave                                                                                                                                                                                                                                                                                                                                                                                                                        |                |        |
| Switch Time                          | 10ms (typical)                                                                                                                                                                                                                                                                                                                                                                                                                        |                |        |
| Parallel capacity                    | 1 ~ 6 units                                                                                                                                                                                                                                                                                                                                                                                                                           |                |        |
| Overload                             | After triggering the overload protection the inverter will<br>resume output after 3 minutes, 5 consecutive overloads<br>will switch off the output until the inverter is restarted.<br>(102% <load<110%) :="" after<br="" and="" error="" output="" shutdown="">5mins;<br/>(110% &lt; load &lt; 125%): error and output shutdown after<br/>10s.<br/>Load &gt; 125%: error reported and output switched off<br/>after 5s.</load<110%)> |                |        |
| BATTERY                              | L                                                                                                                                                                                                                                                                                                                                                                                                                                     |                |        |
| Battery Type                         | Li-ion / Lead-Acid / User Defined                                                                                                                                                                                                                                                                                                                                                                                                     |                | Y      |
| Rated Battery Voltage                | 48Vdc                                                                                                                                                                                                                                                                                                                                                                                                                                 |                |        |
| Voltage Range                        | 40-60Vdc                                                                                                                                                                                                                                                                                                                                                                                                                              |                | Y      |
| Max.MPPT Charging Current            | 180A                                                                                                                                                                                                                                                                                                                                                                                                                                  | 200A           | Y      |
| Max.Mains/Generator Charging Current | 100A                                                                                                                                                                                                                                                                                                                                                                                                                                  | 120A           | Y      |
| Max.Hybrid Charging Current          | 180A                                                                                                                                                                                                                                                                                                                                                                                                                                  | 200A           | Y      |
| PV INPUT                             | [                                                                                                                                                                                                                                                                                                                                                                                                                                     |                |        |
| Num. of MPP Trackers                 | 2                                                                                                                                                                                                                                                                                                                                                                                                                                     |                |        |
| Max.PV array power                   | 5500W+5500W                                                                                                                                                                                                                                                                                                                                                                                                                           |                |        |
| Max.input current                    | 22A+22A                                                                                                                                                                                                                                                                                                                                                                                                                               |                |        |
| Max.Voltage of Open Circuit          | 500Vdc+500Vdc                                                                                                                                                                                                                                                                                                                                                                                                                         |                |        |
| MPPT Voltage Range                   | 125-425Vdc                                                                                                                                                                                                                                                                                                                                                                                                                            |                |        |
| MAINS / GENERATOR INPUT              |                                                                                                                                                                                                                                                                                                                                                                                                                                       |                |        |
| Input Voltage Range                  | 90–275Vac                                                                                                                                                                                                                                                                                                                                                                                                                             |                |        |
| Frequency Range                      | 50/60Hz                                                                                                                                                                                                                                                                                                                                                                                                                               |                |        |
| Bypass Overload Current              | 63A                                                                                                                                                                                                                                                                                                                                                                                                                                   |                |        |
| EFFICIENCY                           | I                                                                                                                                                                                                                                                                                                                                                                                                                                     |                |        |
| MPPT Tracking Efficiency             | 99.9%                                                                                                                                                                                                                                                                                                                                                                                                                                 |                |        |
| Max. Battery Inverter Efficiency     | 92%                                                                                                                                                                                                                                                                                                                                                                                                                                   |                |        |



| MODEL                       | ASP4880S180-H                                         | ASP48100S200-H    | CAN BE SET |  |  |
|-----------------------------|-------------------------------------------------------|-------------------|------------|--|--|
| GENERAL                     |                                                       |                   |            |  |  |
| Dimensions                  | 620*445*130mm (2.03*1.46*0.43ft)                      |                   |            |  |  |
| Weight                      | 27kg (59.52lb)                                        |                   |            |  |  |
| Protection Degree           | IP20, Indoor Only                                     |                   |            |  |  |
| Operating Temperature Range | –10~55°C, >45°C derated<br>(14~131°F, >113°F derated) |                   |            |  |  |
| Noise                       | <60dB                                                 |                   |            |  |  |
| Cooling Method              | Internal Fan                                          |                   |            |  |  |
| Warranty                    | 2 Years                                               |                   |            |  |  |
| COMMUNICATION               |                                                       |                   |            |  |  |
| Embedded Interfaces         | RS485 / CAN / L                                       | ISB / Dry contact | Y          |  |  |
| External Modules (Optional) | Wi-Fi / GPRS                                          |                   | Y          |  |  |
| CERTIFICATION               |                                                       |                   |            |  |  |
| Safety                      | IEC62109-1, IEC62109-2                                |                   |            |  |  |
| EMC                         | EN61000-6-1, EN61000-6-3, FCC 15 class B              |                   |            |  |  |
| RoHS                        | Yes                                                   |                   |            |  |  |